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What is GWAS?

Unbiased exploration of correlations between
SNPs in the human genome and traits

Up to 5M SNPs can be analyzed and millions more
can be imputed

The results are pure statistical correlations

Biological interpretations require further experiments
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What is GWAS?
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Figure 1| Feasibility of identifying genetic variants by risk-allele frequency and strength

of genetic effect (odds ratio). Reproduced, with permission, from Nature REF. 10 © (2009)
Macmillan Publishers Ltd. All rights reserved. GWA, genome-wide association.
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What is GWAS?

Gene expression
Causal variant Z> splicing Z> Disease
Protein structure

Figure 1.1. Intermediate mechanisms mediating causal variant’s effect on disease susceptibility.
Genetic variants modify disease risk by causing changes in gene expression (most common), splicing
process or protein structure.
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Why GWAS?

Genetic association studies have two aims:

To identify genetic markers that can be used for prediction

To unravel disease biology
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Unexpected Results

Table 1| SNPs associated with risk in 8q24.

SNP Disease Position P-value Reference

rs1016343 Prostate cancer 128093297 1% 107 Eeles et al. (2008)

rs16901979 Prostate cancer 128124916 3x 107" Gudmundsson et al. (2007)

rs2456449 Chronic lymphocytic leukemia 128192981 8x 10" CrowtherSwanepoel et al. (2010)

rs16902094 Prostate cancer 128320346 6x10"1° Gudmundsson et al. (2007)

rs378854 Prostate cancer 128323819 Meyer et al. {2011)

rs13281615 Breast cancer 128355618 5x 10~12 Easton and Eeles (2008)

rs1562430 Breast cancer, prostate cancer 128387852 6x 107 Turnbull et al. (2010)

rs10505477 Ovarian cancer 128407443 2% 1073 Ghoussaini et al. (2008), Zanke et al. (2007}
Colon cancer 3x 107"

rs10808556 Owarian cancer 128413147 Ghoussaini et al. (2008)

rs6983267 Ovarian cancer 128413306 9.9x 1072 Yeager et al. (2007), Ghoussaini et al. (2008), Eeles
Colon cancer 1x 107 et al. (2008), Thomas et al. (2008), Tomlinson et al.
Prostate cancer 9x 1013 (2007), Berndt et al. (2008)

rs7837328 Colon cancer 128423127 Berndt et al. (2008)

rs7000448 Prostate cancer 128441170 Ghoussaini et al. (2008)

rs1447295 Prostate cancer, esophageal cancer 128485038 2% 1012 Gudmundsson et al. (2007), Yeager et al. (2007),

Lochhead et al. (2011}

rs4242382 Prostate cancer 128517573 3x10-19 Thomas et al. (2008)

rs7017300 Prostate cancer 128525268 Yeager et al. (2007)

rs10090154 Prostate cancer 128532137 Cheng et al. (2008)

rs7837688 Prostate cancer 128539360 Yeager et al. (2007), Berndt et al. (2008)

D8S1128 Type Il diabetes 128595148 2% 103 An et al. (2008)

rs9642880 Bladder cancer 128718068 7 % 10-12 Ghoussaini et al. (2008}, Kiemeney et al. (2008)

rs11993333 End stage renal disease (type | diabetes) 128992487 1.3x 103 Hanson et al. (2007)

rs2720709 End stage renal disease (type | diabetes) 129058356 2% 10-% Hanson et al. (2007)

rs2648862 End stage renal disease (type | diabetes) 129061785 Hanson et al. (2007)

rs2608053 Hodgkin's lymphoma 129075832 1.16 x 10~7 Enciso-Mora et al. (2010)

rs1499368 End stage renal disease (type | diabetes) 129094589 6.1x 102 Hanson et al. (2007)

rs2019960 Hodgkin's lymphoma 129192271 1.26 x 10-13 Enciso-Mora et al. (2010)

rs1516982 Owarian cancer 129533646 Goode et al. (2010)

rs10088218 Ovarian cancer 129543949 8x 10-18 Goode et al. (2010)

rs10098821 Owarian cancer 129559228 Goode et al. (2010)
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Unexpected Results
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Figure 2. Prostate cancer susceptibility locus is enriched in long noncoding RNAs {IncRNAs). A 1.2 Mb region on chromosome 8g24.21 is a major prostate cancer (PCa)-
susceptibility locus. It harbors multiple PCa-associated single-nucleotide polymorphisms (SNPs; shown in pink) and three PCa-associated IncRNAs (prostate cancer
associated ncRNA transcript 1 [PCATT], prostate cancer noncoding RNA1 [PRNCRT], and Pvt1 oncogene [PVT1], all shown in green), and exhibits frequent chromosomal
amplification in human cancers. For simplicity, intervening protein-coding genes upstream of the MYC oncogene (shown in blue) are not diagrammed. Several microRNA
{miRNA) genes colocalize to this region (shown in orange), three of which are housed within the PVTT "host’ IncRNA gene. However, no prostate-related functions have yet
been ascribed to these miRNAs.

Long noncoding RNAs and prostate
: : carcinogenesis: the missing ‘linc’?
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Enhancer E forms close contact with Myc promoter in 3C assay

Kingston Long-range enhancers on 8g24 regulate c-Myc

UniverSity Jose Sotelo™®, Dominic Esposito®, Maria Ana Duhagon®, Kelley Banfield™®, Jennifer Mehalko®<, Hongling Liao°
LOﬂdOﬂ Robert M. Stephens®*<, Timothy J. R. Harris®, David J. Munroe®?, and Xiaolin Wu?®®



http://www.pnas.org/content/107/7/3001.long
http://www.pnas.org/content/107/7/3001.long

Kingston

University
London

Non-coding Region and Function

The 8924 gene desert: an oasis of non-coding
transcriptional activity

Konrad Huppi *, Jason J. Pitt?, Brady M. Wahlberg' and Natasha J. Caplen
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Figure 1.1. Intermediate mechanisms mediating causal variant’'s effect on disease susceptibility.
Genetic variants modify disease risk by causing changes in gene expression (most common), splicing
process or protein structure.
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Non-coding Region and Function

ANRIL, a long, noncoding RNA, is an [=]
unexpected major hotspot in GWAS
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Abstract

& large noncoding RNA called ANRIL (for antisense noncoding RNA in the INK4
locus) has been identified within the o7 5/ COKNZE-p 16/ COKNZA-p T4/ ARF gene
cluster. While the exact role of ANRI awaited further elucidation, common disease
genomewide association studies (GCWAS) have surprisingly identified the ANMRIL
gene as a genetic susceptibility locus shared associated by coronary disease,
intracranial aneurysm and also type 2 diabetes. Expression studies have confirmed
the coregulation of pl15/COKNZE, pl6/COKN2A, pl4/ARF, and ANRIL. Among the
cluster, ANRIL expression showed the strongest association with the multiple
phenotypes linked to the 9p21.3 region. More recent GWAS also identified ANRIL
as arisk locus for gliomas and basal cell carcinomas in accordance with the
princeps observation. Moreover, a mouse model has confirmed the pivotal role of
ANRIL in regulation of COKNZA/F expression through a cis-acting mechanism and
its implication in proliferation and senescence. The implication of AMRIL in cellular
aging has provided an attractive unifying hypothesis to explain its association with
various susceptibility risk factors. ANRIL identification emphasizes the
underestimated role of long noncoding RMAs. Many CWAS have identified trait-
associated SNPs that felt in nencoding genomic regions. It is conceivable to

Kin Ston anticipate that long, noncoding RMNAs will map to many of these “gene deserts.”—
_g = Pasmant, E., Sabbagh, A., Vidaud, M., Bigche, I. ANR/L, a long, noncoding RMA, is
Un|ver5|ty an unexpected major hotspot in GWAS,
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Genetic Variants and Genome Biology
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Fig. 1. A cascade of regulatory mechanisms by which an eQTL SNP can affect gene expression. Studies mapping regulatory QTLs have
identified a variety of mechanisms, many of which are coordinated, by which eQTLs might act to affect variation in mature mRMA levels. First, eQTL
SNPs can impact epigenetic modifications and transcription initiation. These include regulatory processes such as transcription factor binding,
histone modifications, enhancer activity (perhaps mediated by chromatin architecture and conformation), and DNA methylation. Transcriptional
mechanisms, and specifically transcription factor binding, are likely the strongest contributors to variation in steady-state mRNA levels. Second,
recent work has increased appreciation for transcriptional and cotranscriptional processes as major contributors to variation in gene expression levels
and mRNA isoform diversity. These include mechanisms such as transcriptional elongation (by Polll traveling rates), cotranscriptional splicing, and
mRNA processing and modification. Third, eQTL SNPs both within and outside the transcript have been shown to influence posttranscriptional mRNA
processing, which includes mechanisms such as general mRNA degradation, defects in polyadenylation, and targeting by miRNAs. Finally, preliminary
studies have shown that we do not yet fully appreciate the extent to which variation in mRNA expression might impact or even correlate to variation
Kingston in downstream protein products, the synthesis of which are additionally regulated by a set of posttranscriptional and translational mechanisms.
doi:10.1371/journal.pgen.1004857.g001
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Genetic Variants and Genome Biology
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Figure 6. Effects of bQTLs on Disease Risk

Each example involves a SNP in a TF binding motif that is also a bQTL and is associated with disease risk.

(A) bQTL for NF-B (highlighted in Figure 1B) in an NF-kB binding motif that is also an eQTL for E/F2AKT and associated with myocardial infarction.
(B) bQTL for NF-kB in an NF-«xB binding motif that is also an eQTL for CCNDT and is associated with prostate cancer. See also Figure S5.

(C) bQTL for PU.1, NF-kB, and JunD in a PU.1 binding motif that is also associated with Crohn’s disease.

(D) bQTL for JunD and PU.1 in a CTCF binding motif that is also associated with inflammatory bowel disease.

(E) Comparing enrichments for asthma-associated SNPs: all bound SNPs (left) and bQTLs (right).

. Pooled ChIP-Seq Links Variation
Kingston in Transcription Factor Binding
University to Complex Disease Risk
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Genetic Variants and Genome Biology
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Genetic risk variants can alter chromatin loop formation
bridging enhancers and promoters

The human genome is organized in a 3D architecture which
is thought to regulate a diverse set of DNA-templated
processes [87-91|. This allows regulatory elements, such
as enhancers and promoters, to interact physically through
long-range chromatin interactions, or chromatin loops, to
regulate gene expression [39,42]. The human pigmentation-
associated SNP, rs12913832, imposes allele-specific chro-
matin loop formation [92]. The rg12913832 SNP resides in
an enhancer 21 kb upstream of the OCAZ (oculocutaneous
albinism IT) pigment gene [92]. The T allele of this SNP

TF/PF > (D) RISC
o - favors chromatin loops to the OCAZ gene compared tothe C
e Aaan N allele and is associated with a darker pigmentation in
(€) C,'Z:V'l; melanocytes [92]. Specific DNA binding proteins, including
° e I the cohesin and mediator complex as well as the insulator
,« miRNA T i protein CTCF (CCCTC-binding factor), promote chromatin
? ——AAAAA loop formation [93-95]. Although the rs12913832 SNPisthe
a4 i /\ only genetic risk variant known to modulate chromatin loop
mRNA A2

™~

IncRNA Al

TRENDS in Genetics

formation, variants altering the DNA affinity for looping
factors will likely also result in allele-specific chromatin loop
formation (Figure 2C).

Figure 2. Non-coding genetic risk variants. (A) Genetic risk variants influence DNA methylation level at promoter regions. (B) Genetic risk variants modulate transcription
factor binding to chromatin. (C) Genetic risk variants alter chromatin loop formation bridging enhancers and promoters. (D) Genetic risk variants influence the repression
effect of miRNAs. [E) Genetic risk variants influence the interaction of IncRNAs with target proteins. Abbreviations: Enh, enhancer; LF, chromatin looping factor; IncRNA,
long non-coding RNA; miRNA, microRNA; NP, nuclear protein; PF, pioneer factor; Prom, promoter; RISC: RNA-induced silencing complex; TF, transcription factor.

Laying a solid foundation for
Manhattan - ‘setting the functional
basis for the post-GWAS era’
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3D Genome: Chromatin Interactions

The eukaryotic nucleus is a complex 3D environment in which genome function
depends not only on the linear arrangement of regulatory sequence elements,
but also on their spatial organization for effective control of gene expression.

Analysis of the role of chromatin 3D organization in gene expression is
progressing rapidly, largely due to the development of chromosome
conformation capture methods such as Hi-C.

Sequences within “Topologically Associated Domains” (TADs) interact more
frequently with sites inside than outside the domain. TADs with a median size of
880 kb have been found in mammals.

Breaking TADs: How
Alterations of Chromatin
Kingston Domains Result in Disease

UnlverS|ty Dario G. Lupianez,'?*® Malte Spielmann, '3
Stefan Mundlos'-2®*

and
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3D Genome: Chromatin Interactions
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Figure 2. An example of a Hi-C contact map. Hi-C contact map of a segment of &
mouse chromosome 11, generated using Sushi [90] from Dixon et al. [85] data. A
E TAD and a long-range interaction between two lodi are annotated. A colour version
KlngStOn and a long-range interactio

of this figure is available online at BIB online: https://academic.oup.com/bib. In the loop: promoter-enhancer interactions and
bioinformatics
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3D Genome: Chromatin Interactions
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[Chromosome folding and its regulation by CTCF and IncRNAs.JChromosomes occupy distinct territories in the nucleus of mammalian cells
(center). The circle represents a view in the nucleus of a cell where three chromosomes (lines) and their territories (highlights) are shown in
different colors. Each chromosome sequentially folds into chromatin domains across size scales to guide proper gene expression (top). The
orange and green line represents the folding of chromatin into domains (subTAD/TAD/metaTAD) delimited by the cohesin complex and
architectural protein CTCF. Areas where the line is orange indicate a domain where transcription is active whereas inactive domains are shown
with green lines. Active and inactive domains preferentially interact with each other respectively, and they tend to spatially colocalize in either
active (A, orange) or inactive (B, green) compartments. Chromatin organization into domains or compartments as measured with 3C technologies
is shown in heatmap form (top right). CTCF and cohesin regulate transcription by various mechanisms including the formation of loop structures
that restrict the spread of activating histone marks (feft). In the example shown, CTCF binding and dimerization forms a loop structure that

Kin ston contains a cluster of inactive genes (red arrows) silenced by H3K27me3 (pinks dots). Formation of this subTAD also serves to prevent further
_g = spreading of silencing marks into neighboring regions where genes are active (green arrows). IncRNAs bind histone-modifying complexes to
UnlverSIty regulate chromatin activity and structure (right). In this example, transcription of a IncRNA gene yields transcripts that recruit chromatin-modifying

complexes at nearby genes to silence them while CTCF provides boundaries to limit the scope of this effect. This regulation can occur within

LOﬂdOﬂ chromosomes (cis) or between them (trans).
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3D Genome: Chromatin Interactions
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Figure 1. Models of chromatin organization. A diagram of different models of chromatin organization in the nuclear space. Interphase chromatin that interacts with
the nudear lamina (grey), nucleolus (green), nudear pores (red), transcription factories (orange) and splicing speckles (black) are depicted here. Generally, lamin- and
nucleolar-assodated domains are transariptionally repressed and have a2 more condensed chromatin, whereas chromatin that loops to the nuclear pore, transaription
factories and splidng speckles are transcriptionally active and therefore have 2 more open chromatin structure (here, depicted as 10 nm chromatin fibre). Enhancers
can activate gene expression over a distance and contgin binding sites for TFs that recruit co-factors (activators or repressors). A promoter-enhancer booping mechan-
ism mediated by cohesin (brown), CTCF (purple) and the mediator complex {red) that brings the enhancer into close proximity to its target promoter are presented in
the enlarged box. The enhancer and promoter are marked with white boxes, and the transcription start site of the transaribed target gene is annotated with an arrow.
TFs (green) and co-factors (yellow) bind the enhancer and are brought close to the basal transaiption machinery at the promoter. RNAPolll (orange) transcribes pre-
mRNA from the target gene and eRNA from the enhancer. Some of these models may co-exist for different PEls; however, there are also other models that we could
notshow. A colour version of this figure is available online at BIB online: httpsy//academic.oup.comv/bib.
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3D Genome: Chromatin Interactions

Ji et al. map the chromosome
organizational structures that underlie
gene regulation in human naive and
primed pluripotent cells. Their framework
of cohesin-associated CTCF loops, and
the cohesin-associated enhancer-
promoter loops within them, provides a
reference map for future interrogation of
regulatory interactions.

e ChIA-PET analysis maps enhancers and insulators into
looped domains

e Cohesin-associated loops organize topologically associating
domains (TADs)

e Regulatory changes during cell state transitions take place

hESCs

Naive

Genome-wide Mapping

Active Enhancers Enhancer-Promoter CTCF-CTCF/Cohesin

Loops Loops
TFs & i =
Cohesin %6« Cohesin
?ofactorz —H3K27ac &{
=S -8 Cohesin

I

3D Regulatory Landscapel

within TADs

The conserved anchors of CTCF-CTCF loops are frequently
mutated in cancer

Kingston

University
London

Clusters of Insulated Neighborhoods

Topologically
Associating
Domains (TADs)

Enhancer-Promoter

loops

3D Chromosome Regulatory Landscape
of Human Pluripotent Cells

Xiong Ji,'® Daniel B. Dadon, 26 Benjamin E. Powell,’- Zi Peng Fan,'-*:6 Diego Borges-Rivera,’-%6 Sigal Shachar,*
Abraham S. Weintraub,'? Denes Hnisz,' Gianluca Pegoraro,® Tong Ihn Lee, Tom Misteli,* Rudolf Jaenisch,»>*
and Richard A. Young'%*



http://www.sciencedirect.com/science/article/pii/S1934590915005056

Kingston

University
London

3D Genome: Chromatin Interactions
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Figure 1. Schematic diagram of regulatory re-wiring following the deletion of a domain boundary. (A) Interactions between enhancers
and their target genes occur within chromatin domains. The deletion of a boundary region leads to novel gene-enhancer interactions between
previously insulated elements; this process may lead to the spatial or temporal mis-expression of genes. (B) The same scenario as in
(A) is drawn as represented by a high-throughput chromosome conformation capture (Hi-C) interaction map. Red triangles: topologically
associating domains; yellow boxes: regulatory elements; blue boxes: target genes; green circles: insulator elements. Further examples of
pathogenic genomic rearrangements, including insulator-spanning tandem duplications, are illustrated in 31.
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3D Genome: Chromatin Interactions

Disruption of Topologically Associating Domain (TAD) Structure Causes
Congenital Disease
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Figure 3. (A) F syndrome is a rare dominantly inherited skeletal disorder characterized
by syndactyly of the first and second fingers. An inversion leaves the TAD boundary
intact but places a cluster of limb enhancers from a neighboring TAD in front of WNT6
causing misexpression in digit 1 and 2. (B) Autosomal-dominant adult-onset
demyelinating leukodystrophy (ADLD) is a rare neurological disorder characterized by
progressive central nervous system demyelination due to overexpression of LMNB1. A
600-kb deletion including a TAD boundary was shown to result in pathological
interactions between three strong forebrain enhancer elements and the LMNB1
promoter resulting in cerebral lamin B1 overexpression and myelin degeneration. (C)
Structural variations can alter the TAD architecture of the genome by deleting,
duplicating, or inverting TADs and their boundaries, thereby allowing enhancers from
neighboring domains to ectopically activate genes causing misexpression and disease.
Deletions on chromosome 6p22.3 have been shown to cause mesomelic dysplasia
featuring hypoplastic tibiae and fibulae. The deletions span three TADs and remove
two TAD boundaries. This brings several potential limb enhancers into close proximity
with ID4, presumably resulting in misexpression in the developing limb bud.
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3D Genome: Chromatin Interactions

Tissue Specificity
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Distance

A Analysis of Contact Frequency Over Genomic Distance
FIRE vs. Non-FIRE Anchor Bins

GM12878

log 2(FIRE/non-FIRE)

T T 5o
-520kb -200kb +200kb +520kb +1Mb

Position Relative to FIRE bin

Figure ?.lFIHEs Have Several Targets and Are Self-Interactive |

(A) Heat map showing the relationship between the mean observed contact frequencies at FIREs compared to the mean observed contact frequency
at non-FIREs. Enrichment is shown as the ratio between the two contact observed mean contact frequencies (FIRE:non-FIRE) per unit genomic distance, from +
40 kb to + 2 Mb, centered on FIRE bins. Each row represents the analysis of a different sample, and the color intensity corresponds to the enrichment value.
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Disease Associations

EIREs Are Enriched for Disease-Associated SNPs

Kingston

University
London

Our analyses have indicated that FIREs are enriched for active
enhancers and super-enhancers (Figures 4A-4D; Figures S3B,
S3C, S3F, S3G, S3N, and S30). Because typical and super-en-
hancers contain a significant proportion of disease-associated
SNPs (Hnisz et al., 2013), we further investigated the overlap be-
tween FIREs and disease-associated SNPs. First, we mapped
4,327 previously annotated disease-associated non-coding
SNPs to FIREs defined in each cell line and tissue (see Supple-
mental Experimental Procedures) (Hnisz et al., 2013). Consistent
with previous results (Hnisz et al., 2013), we observed 7.06 and
3.76 SNPs per megabase, and among 354 GM12878 FIREs
overlapped with super-enhancers and 2,800 GM12878 FIREs
overlapped with typical enhancers, respectively (Figure S5A).
Surprisingly, among 1,615 GM12878 FIREs that do not overlap
an annotated enhancer, we also observed 3.33 SNPs per mega-
base, which is ~2.3-fold higher than the genome-wide SNP den-
sity (1.42 SNPs per megabase) (Figure S5A). Importantly, these
SNPs would not be captured by directly overlapping supe?n—
hancers or typical enhancers with disease-associated SNPs
(Hnisz et al., 2013).
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Figure 6. FIREs Are Enriched with Disease-Associated GWAS SNPs TAD Boundary

(A) Heat map showing the enrichment of disease-associated GWAS SNPs (see Supplemental Experimental Procedures) in FIRE bins for each cell line or tissue

(columns). Rows represent the enrichment of disease-associated SNPs for one disease, and all rows in the presented heat map are sorted from high to low based

on enrichment score in GM12878 (lymphoblast cell ling). Only diseases with >15 SNPs are shown. Noted to the right are the top 15 diseases for which disease-

associated SNPs are most enriched in GM12878 FIREs, showing the high enrichment of several diseases (all except mean corpuscular volume) with previously

noted immune-mediated pathology (Jostins et al., 2012). FDR < 1x10°*

(B) Normalized Hi-C contact matrix of a 2.16-Mb locus (chr1:65,120,000-67,280,000) in GM12878 cells. The tracks below depict the presence of two SNPs

associated with acute lymphoblastic leukemia (rs546784 and rs6683977) located within a FIRE bin (brown, chr1:66,760,000-66,800,000), ~30 kb outside of a

GM12878-specific super-enhancer (red) and also within the PDE4B gene sequence. To the right of the Hi-C contact matrix is the FIRE score.

(C) Bar plots showing the enrichment of Parkinson’s disease-associated SNPs across 14 primary adult tissue FIRE annotations, also highlighting the highest

enrichment in FIREs from both brain tissues (CO and HC).

(D) Bar plots showing the enrichment of SNPs associated with the quantitative triglycerides trait across 14 primary adult tissue FIRE annotations, also highlighting
I j inliver FIBES.

(E) Normalized Hi-C contact matrix (top) in GM12878 for a 4.04-Mb locus (chr7:48,440,000-52,480,000) centered on IKZF1 (red text). The Hi-C color scale ranges

from the 15" to 99" percentile normalized contact frequencies within this locus. The reflected matrix shows the statistically significant (FDR < 1e—6) bin-pairs

within2-Mb genomic distance across the locus. Only bin pairs with FDR < 1e—6 are yellow; the rest are black. Between the matrices are a UCSC gene annotations

(blue, top), RNA-seq data (red), H3K27Ac data (black), typical enhancer annotations (Hnisz et al., 2013) (purple), FIRE annotations (brown), TAD boundary

calls (blue), and an SNP that is statistically linked to the IKZF1 TSS (green). The blue lines outline the 440-kb locus (chr7:50,240,000-50,680,000) that is Scale 100 kb | | hg19

shown in (F). chi7: 50.3Mb 504Mb 50.5Mb 50.6Mb

UCSC Gene: o - ok -
(F) Same as (E), except a zoomed-in snapshot of a 440-kb locus (chr7:50,240,000-50,680,000) centered on a SNP-bearing FIRE bin (chr7:50,440,000- = PRk S

RNA-seq

50,480,000) containing the 3' UTR of IKZFT and the SNP rs6964969. The blue box outlines the bin pairthat is the significant interaction between previously known n:,u,,\:

SNP-gene pairs. ypical Enhane
ar plots showing the enrichment of liver X n peak bin pairs as a function of the subset of top liver peaks (based on owest false

discovery rate) determined by Fit-Hi-C.

(H) Same as (G), except using aorta GTEx eQTLs, FIREs, and FIRE peaks.

() Same as (G), except using left ventricle GTEx eQTLs, FIREs, and FIRE peaks.

(J) Same as (G), except using cortex GTEx eQTLs, FIREs, and FIRE peaks.
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Metabolic gatekeeper function of B-lymphoid
transcription factors

Lai N. Chan'2, Zhengshan Chen!2, Daniel Braas®, Jae- Woong Lee!-, Gang Xiao-%2, Huimin Geng?*, Kadriye Nehir Cosgun'-,
Christian Hurtz*, Seyedmehdi Shojaee*, Valeria Cazzaniga*, Hilde Schjerven®, Thomas Ernst®, Andreas Hochhaus®,

Steven M. Kornblau®, Marina Konopleva®, Miles A. Pufall’, Giovanni Cazzaniga®, Grace J. Liu?, Thomas A. Milne!?,

H. Phillip Koeffler':'2, Theodora S. Ross?, Isidro Sanchez-Garcia'¥, Arndt Borkhardt', Keith R. Yamamoto*, Ross A. Dickins?,
Thomas G. Graeber® & Markus Miischen':?

B-lymphoid transcription factors function as metabolic gatekeepers by limiting the
amount of cellular ATP to levels that are insufficient for malignant transformation.
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FTO rs1421085
Chromosome 16 - NC_000016.10
[ S3544546 [ s4a6eT72 W
Lo 05371 EEBI T . LIMCOZ218% .
RPGRIFLL LOCias37iam TRM¥3
FTO-ITL

Chr16:53703963..54114467

Claussnitzer and colleagues recently showed that the FTO allele, which
shows the strongest genome wide association signal for obesity, acts a
gain of function. Using CRISPR/Cas9 genome editing, they showed that
the disease-associated single-nucleotide variant rs1421085 T to C
disrupts a conserved motif for the ARID5B repressor, which unleashes a
pre-adipocyte enhancer, leading to a doubling of IRX3 and IRX5
expression during early adipocyte differentiation.
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FTO Obesity Variant Circuitry and Adipocyte Browning in Humans
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A) Physical proximity between DEXI gene locus and
(from the Ren lab, [85]) show interactions between

|

T

-associated SNPs with disease candidate genes.
CLEC16A intron 19 and the DEXI locus. The enhancer marks in IMR-90 cells for H3K4me1 and H3K27ac are shown in green and blue, respectively, and the filter thresh-

old for the Hi-C data was set to 5. SNPs in the region are in black, and the eQTL SNP rs12708716 is marked in red. The arc (pink) for interacting regions (grey) is

highlighted with an arrow. (B) Long-range interactions links obesity-associated variants in FTO with the IRX3 locus. Hi-C data in human foetal lung (IMR-90) cells show
associated SNP rs9930506 is marked in red. Arcs (pink) for interacting regions (grey) are highlighted with arrows. These public data sets are available and visualized

with the WashU EpiGenome Browser (http://epigenomegateway.wustl.edu/browser/). dbSNP release 137 is shown in dark green, and the The National Human Genome
Research Institute (NHGRI) Catalogues of GWAS are visualized in UCSC browser (http://genome-euro.ucsc.edu) [166]. A colour version of this figure is available online at

tissues from the NIH Roadmap Epigenomics Mapping Consortium. The filter threshold for the Hi-C data was set to 10. SNPs in the region are in black, and the BMI-
BIB online: httos://academic.oun.com/bib.

interactions between the first intron of FTO with IRX3. The tracks for H3K4me1 and H3K27ac are shown in green and blue from IMR-90 cells and different human brain

Figure ' Long-range interactions functionally connect disease

autol

In the loop: promoter-enhancer interactions and
bioinformatics

Antonio Mora, Geir Kjetil Sandve, Odd Stokke Gabrielsen and
Ragnhild Eskeland
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ﬁ%ccsz Chromatin Chromatin Space Interaction

Method Search Download

Method: All ~ Species: hg38 + Cell Type: All -

— @ Search by Ensembl ID or gene name

Input Ensembl ID or gene name: FTO Example: ENSG00000230368 or FAM41C

— © Search by chromatin fragment

Input chromatin fragment: Example: chr1:1-1000
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FTO rs1421085

G4 j"cg‘ &S;QC

w\g?%%ccsj Chromatin Chromatin Space Interaction

Fragment1 - Fragment2 Contact FDR P-Value Method Species Cell Type Enhancer Antibody Resolution Geo
(+) [ chr16:53431869-53437682 chr16:53701668-53718194 ] 24 0.000500354 NA CHI-C hg38 GM12878 NA NA 7.3kb NA
© chr16:53501368-53503674 chr16:53701668-53718194 24 0.001130303 NA CHI-C hg38 GM12878 NA NA 7.3kb NA
© chr16:53701668-53718194 chr16:53683060-53692052 62 0.000414481 NA CHI-C hg38 GM12878 FANTOMS NA 5.2kb NA
© chr16:53701668-53713194 chri6:52654234-53663350 41 0.000511939 NA CHI-C hg38 GM12878 FANTOMS NA 5.2kb NA
© chr16:53701668-53718194 chr16:53678989-53632645 32 0.000515715 NA CHI-C hg38 GM12878 FANTOMS NA 5.2kb NA
© chr16:53701668-53713194 chri6:53735718-53740760 43 0.000534632 NA CHI-C hg38 GM12878 FANTOMS NA 5.2kb NA
© chr16:53701668-53718194 chr16:53671359-53675085 40 0.000544835 NA CHI-C hg38 GM12878 FANTOMS NA 5.2kb NA
© chr16:53701668-53713194 chri6:53753214-53756340 34 0.000560596 NA CHI-C hg38 GM12878 FANTOMS NA 5.2kb NA
© chr16:53701668-53718194 chr16:53725659-53735717 39 0.0006141 NA CHI-C hg38 GM12878 FANTOMS NA 5.2kb NA
© chr16:53701668-53713194 chr16:53764083-53773653 25 0.000629421 NA CHI-C hg38 GM12878 FANTOMS NA 5.2kb NA
Showing 1 to 10 of 43 enfries Previous 1 3 5 Next
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SNCA rs356168

Parkinson’s disease protective allele:

Efficient TF binding
Decreased SNCA expression
Decreased Parkinson’s disease risk
SNCA
: —-—-['_: - - GGTAATT A GAACAAT 3
s = = = o -
Promoter | rsﬂﬁf‘iﬁs |
Suppressed distal enhancer
Parkinson’s disease risk allele:
Reduced TF binding
Increased SNCA expression
Increased Parkinson's disease risk
SNCA
Figure 4 | Proposed model describing the correlation between
SNP-dependent TF binding, SNCA expression and Parkinson’s disease . [ s :: B araravs m'hw ------ ¢ R
risk. Carriers of the A allele at rs356168 (Parkinson’s disease protective Promoter | rm::f 168 |
allele) show efficient binding of the brain-specific TFs EMX2 and NKX6-1 Active distal enhancer

at the distal intron-4 enhancer, which results in a suppressed distal
enhancer and consequently lower expression of SNCA associated with a
reduced risk to develop Parkinson’s disease. In contrast, carriers of the

G allele at rs356168 (Parkinson’s disease risk allele) show reduced TE
binding, which results in an active distal enhancer leading to increased
expression of SNCA and increased risk of developing Parkinson’s disease.

Parkinson-associated risk variant in distal enhancer
of o-synuclein modulates target gene expression

University
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Figure 1 Functional characterization of the 8q24 CL/P regulatory landscape. (a) The human 8qg24 interval associated with CL/P risk. Genes are shown
as plain arrows (black, protein-coding genes; gray, annotated noncoding transcripts). The CL/P interval® and the most significantly associated SNP
(rs987525) are indicated in blue. (b) Syntenic organization of the mouse locus, depicting transposon insertions (blue triangles) and deletions (red bars)
used in this study. An expanded list of insertions and alleles is given in Supplementary Table 1. The expression patterns of adjacent insertions (shown
in ¢) define a broad ‘medionasal regulatory domain’ indicated by a blue bar whose width represents relative LacZ expression levels.

Long-range enhancers regulating Myc expression are
required for normal facial morphogenesis
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Human complex
traits/diseases

In Brief

Tan et al. identify and characterize 69
human complex trait/disease-associated
lincRNAs in LCLs. They show that these

) LRSS loci are often associated with cis-
regulation of gene expression and tend to
be localized at TAD boundaries,

GWAS Phenotypic suggesting that these lincRNAs may
analyses Impact influence chromosomal architecture.
eQTL - :
association cis-regulation e We identify 69 lincRNAs associated with human complex
/\ : traits (TR-lincRNAs)
/_\ e TR-lincRNAs are conserved in humans and interact with other
disease-relevant loci
_|—h_h_ e TR-lincRNAs often associate with cis-regulation of proximal
GWAS lincRNA pcgene protein-coding gene expression
SNP
H3K4m(_e1/me3 e TR-lincRNAs are enriched at TAD boundaries and may
ratio modulate chromatin architecture
Topologically ——
associated .
domains Boundary domain

Kingston

University

[Welglele]g

cis-Acting Complex-Trait-Associated
lincRNA Expression Correlates
with Modulation of Chromosomal Architecture

Jennifer Yihong Tan,’>" Adam Alexander Thil Smith,'-? Maria Ferreira da Silva,’? Cyril Matthey-Doret,"? Rico Rueedi,?*
Reyhan Sonmez,?* David Ding,* Zoltan Kutalik,®5 Sven Bergmann,?® and Ana Claudia Marques'-%6-
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Figure 1. Cis-Acting TR-lincRNAs May Influence Target Gene Expression by Altering Intra-TAD IncRNAs Regulate
Chromosomal Looping. (A) By using GWAS cis-eQTL analysis, Tan et al. [8] identified regulatory interactions Geane
between cis-acting TR-IncRNAs and target genes. TADs containing TR-lincRNAs display a higher density of éﬁ%‘[negture: Fact or
chromosomal contacts. TR-lincRNAs are often located near the boundaries of TADs and arise from enhancer )

Stephanie Fanucchi'?* and

regions. (B) TR-lincRNAs were shown to be occupied by cohesin, but not by CTCF. (C) Possible TR-lincRNAmMode Musa M. Mhlanga'>*

(s) of action. TR-lincRNAs may (i) regulate chromosomal looping directly; (i) use chromosomal looping to bring How does the non-coding portion
protein binding partners, such as transcriptional regulators or chromatin remodelers, in close proximity to target zfa‘t“:geq';"g";ig;':f:;::‘en‘e‘;‘t';:ji
Ki ng ston genes; or (i) act as miRNA decoys. Abbreviations: ChiP-seq; chromatin immunoprecipitation with deep sequen- recent paper ct;:sziapn et . focuses
U n ive rSity cing; CTCF, CCCTC-pinding factor.; eQTL, expre§sion que.mtita?[ive trait Iocus;. GWAS ] genome-v\..fide association acing _complox-raiassocatod
study; HSK4me1/3, histone H2 lysine 4 mono/trimethylation; incRNA, long intergenic non-coding RNA r':gsom;izntait:::fo';’;gg‘fc;ﬁy
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An intronic polymorphism of IRF4 gene influences gene transcription in vitro and
shows a risk association with childhood acute lymphoblastic leukemia in males

Thuy N. Do, Esma Ucisik-Akkaya, Charronne F. Davis, Brittany A. Morrison, M. Tevfik Dorak *

Genomic Immunoepidemiology Laboratory, HUMIGEN LLC, The Institute for Genetic Immunology, 2439 Kuser Road, Hamilton, NJ 08690-3303, USA
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LUC —Poly A oo C_U()
Luc —poly AJlf C = C_D(#)
LUC —Poly A-e=iliC T c_D(-)
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Fig. 1. IRF4 intron 4 with wild type allele C at SNP rs12203592 represses IRF4 promoter activity while IRF4 intron 4 with variant allele T significantly alleviates this repressive effect.
Both work in an orientation- and position-independent manner. The full 1.2-kb fragment of intron 4 of the human IRF4 gene (contains either a wild type C or variant allele T at SNP
rs12203592) was subcloned into the luciferase-reporter plasmid driven by a 2.4-kb IRF4 promoter ( the big black arrow right before luciferase gene (LUC)). In all of the constructs, the
LUC is used as a reporter gene whose mRNA is stabilized by a polyadenylation/splice signal from the simian virus 40 (Poly A). Raji cells were co-nucleofected with these constructs
and with the internal control plasmid pGL4.13[hRenilla/5V40] and then assayed for both firefly and Renilla luciferases after 24 h. To adjust for differences in transfection efficiencies,
firefly luciferase values were standardized to Renilla luciferase values. The results are from three independent experiments. The error bars represent standard errors. *Comparison
berween intron 4 with the variant allele T and intron 4 with the wild type allele C; ”cnmparisnn between CD(+ )CtoT with TD(+ ).
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Allele-specific transcriptional regulation of IRF4 in
melanocytes is mediated by chromatin looping of the
intronic rs12203592 enhancer to the IRF4 promoter
Mijke Visser, Robert-Jan Palstra’ and Manfred Kayser"

Department of Forensic Molecular Biology, Erasmus MC University Medical Centre Rotterdam, Wytemaweg 20,
3015 CM Rotterdam, The Netherlands

The rs12203592 enhancer physically interacts with the /IRF4 promoter through an allele-
dependent chromatin loop.
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The rs12203592 enhancer physically interacts with the IRF4 promoter through an allele-dependent chromatin loop.

rs12203592

——

oo

1
\ IRF4 gene

3 Figure 7. Proposed model for the chromatin conformation of the IRF4 locus and subsequent transcriptional regulation of IRF4, depending en the allelic status of rs12203592
in melanocytes and melanoma cells. The pigmentation-associated SNP rs12203592 is located in intron 4 of IRF4 and the region around this SNP functions as an enhancer
element. The transcription factor TFAP2u acting as sequence specific DNA binding factor recognizes the 1s12203592 enhancer in an allele-dependent manner, which then
allows for the recruitment of the transcription factors MITF, YY1 and potential additional transcription factors like LEF1. Chromatin loops are formed between the
1512203592 enhancer and the IRF4 promoter as well as the intron-7 YY1-element, both interactions depend on the allelic status of rs12203592. With the C-allele
present, TFAP2o binds the rs12203592 enhancer, followed by recruitment of additional factors like MITF, YY1 and petentially LEF1, loop formation and proper
transcriptional activation of the IRF4 gene. The T-allele is unable to bind TFAP2«, which leads to reduced recruitment of additional factors, reduced loop formation
and diminished IRF4 expression in skin melanocytes. The different interactions between the rs12203592 enhancer and the IRF4 promoter (as well as the intron-7 YY1-
element) could be the result of a shift in equilibrium between the unfolded and interacting state that depends on the rs12203592 alleles, which is indicated by the
double, opposite-directed arrows. In the G361 melanoma cell line, the TFAP2« factor presumably still binds the rs12203592 enhancer and loop formation toward the

IRF4 promoter is established; however, the loop toward the intron-7 YY1 element is disrupted, resulting in a less stable chromatin structure and consequently,
diminished expression of IRF4. In the BLM melanoma cell line, MITF is absent and no chromatin leops are formed, resulting into a linear chromatin conformation and
. LEF1 silenced IRF4 expression.
() miTe
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oYY G361
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/ - - - - -
&« Allele-specific transcriptional regulation of IRF4 in
KlngSton melanocytes is mediated by chromatin looping of the
Un|VerS|ty intronic rs12203592 enhancer to the IRF4 promoter
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Bioinformatics

Fig. 9 Circlet view of promoter-promoter interactions for histone genes in GM12878 cells. Interactions where histone gene promoters are
engaged at both fragment ends are shown in dark magenta. Interactions where histone gene promoters are interacting with non-histone gene
promoters are shown in grey. The WashU EpiGenome Browser [58, 59] was used to create this figure

.

Cairns et al. Genome Biology (2016) 17:127

DOI 10.1186/513059-016-0992-2 Genome BiOlOgy

METHOD Open Access

i CHICAGO: robust detection of DNA looping @
ingstan interactions in Capture Hi-C data

U nive rS|ty Jonathan Cairns'™, Paula Freire-Pritchett'", Steven W. Wingett'?, Csilla Vamai', Andrew Dimond', Vincent Plagnol,
Daniel Zerbino®, Stefan Schoenfelder, Biola-Maria Javierre', Cameron Osborne®, Peter Fraser'

I_Oﬂdon and Mikhail Spivakov'”



http://download.springer.com/static/pdf/454/art:10.1186/s13059-016-0992-2.pdf
http://download.springer.com/static/pdf/454/art:10.1186/s13059-016-0992-2.pdf

Bioinformatics Tools

Novel SNP analysis allows users to annotate SNPs

2 g reaoswe | anywhere inthe genome. Figure 1. Data and Tools Used to Analyze
Z v . . . .
5 Identifying SNPs in linkage with lead SNPs allows NO"COdIng Varlants' Slngle nUC|e°tlde
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B I - . .
E QTL ’
e red) and conservation (blue) data, machine
- Expression quantitative trait loci (eQTL) are .
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5 . seEen (yellow). Each tool discussed in this perspective
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£ —r. . & represents optional input data sets supplied by
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B i e the user. Abbreviations: 3C, chromosome
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1 ‘ | matrices (PWMs). . ’ ’
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; ! heterochromatin). ChIA-PET, chromatin interaction analysis by
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! . i ..
P — . networks; DNase-seq, DNase | hypersensitive
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LDGIdb: a database of gene interactions referred from
long-range linkage disequilibrium between pairs of SNPs

Ming-Chih Wang!, Feng-Chi Chen?", Yen-Zho Chen', Yao-Ting Huang?, and Trees-Juen Chuang'*

1. Division of Biostatistics and Biocinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan

2. Genomics Research Center, Academia Sinica, Taipel 11529, Taiwan
3. Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-yi County 600, Taiwan.

Home Query Download FAQ Contact

LDGIdb: a database of gene interactions inferred
from long-range strong linkage disequilibrium

Kingston between pairs of SNPs
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Original article
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GeneHancer: genome-wide integration of
enhancers and target genes in GeneCards

Simon Fishilevich™', Ron Nudel™’, Noa Rappaport’, Rotem Hadar’,
Inbar Plaschkes’, Tsippi Iny Stein’, Naomi Rosen', Asher Kohn?,
Michal Twik', Marilyn Safran’, Doron Lancet’* and Dana Cohen*

'Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel and
?ifeMap Sciences Inc, Marshfield, MA 02050, USA

Genomics fur IRFs Gene ?

Producis: Regulatory Element

Regulatory Elements for IRF4 Gene

Enhancers for IRF4 Gene W @

Filter: (40 results) See all 40 »
GeneHancer  Enhancer Enhancer Gene- TSS distance  Number of Transcription Factor Bindin:
- Enhancer Total Score Size (kb) _p. 9 Gene Targets for Enhancer
Identifier Score Sources Score (kb) Genes Away Sites within enhancer
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@ Ensembl, genes
- ENCODE,
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D Ensembl, genes
= ENCODE,
dbSUPER
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* ENCODE, genes
dbSUPER
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mews: 06102013 Improve HIiC resolution to
10KDb for GM12378, K562, H1-hESC and
RWPE1 cell types.

news’ 30/05/2013 External browser now can
be connected to HapleReg v2, Regulomedb,
SNvrap and UCSC ENCODE Browser for
candidate regulatory variants.

news: 09/04/2013 Feature enhancement: 1)
Support adjusting the P-value for scanning
putative TF binding sites; 2) Support the
analysiz without cell-type restriction.
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Welcome to the gateway of GWAS3D. Interpreting noncoding phenotypically associated variants is an indispensable step to understand
molecular mechanism of complex traits, GWAS3D systematically compute the probability of genetics variants affecting regulatory
pathways and underlying disease/trait associations by integrating chromatin state, functional genomics, sequence motif, and
conservation information when given GWAS data or variant list. GWAS3D also provided comprehensive annotations and visualizations to
help users interpreting the results. Please check detailed information on online help.

Main Functions

» Identify the most probable functional variants which affect transcriptional regulation;

= Prioritize the leading variants when given a full list of GWAS result;

« Evaluate the deleteriousness of genetic variants affecting the gene regulation when given a list of variants;
» Annotate genetic variant from regulatory perspective.

Please cite the work from:
GWAS3D: detecting human regulatory variants by integrative analysis of genome-wide aszociations, chromosome interactions and
histone modifications Nucleic Acids Research. doi:10.1093/nar/ gkt456.
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GWAS3D: detecting human regulatory variants by
integrative analysis of genome-wide associations,
chromosome interactions and histone modifications
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Gag, )0
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A ccsg  Chromatin Chromatin Space Interaction

Home Method Search Download Help Update

Welcome to CCSI database

Here, CCSI (Chromatin Chromatin Space Interaction) database presents 3,017,962 chromatin interaction pairs with annotation of genes,
enhancers and SNPs in many cell lines of human, mouse and yeast. These data were obtained by means of 3C, 4C, 5C, ChlA-PET and Hi-C
technology in a cell's natural state, nearly all of which detected the three-dimensional architecture of chromosome by coupling ligation in close
spatial proximity followed by high-throughput sequencing. So transcriptional regulatory mechanism in disease pathogenesis associated with
spatial interactions among genes, enhancers and SNPs could be explored on the base of it.
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Database, 2016, 1-7
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Original aricle Q\_#

Qriginal article
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CCSI: a database providing chromatin-
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of Chr1 in IMRS0 cell line based on a set of Hi-C data. (A} Chromosomal 3D

Figure 2. Chromosomal 3D structure and pr P inter:
structure. The dashed circle with two orange crescents that stand for nuclear pore complex is the nucleus membrane. The thick grey lines are chro-
matin and the purple circles stand for proteins that link chr in together. (B) P —pri i of Chr1. (C) Promoter-promoter inter-

actions of Chr1:1-20000000, zooming into the i ions. The red lines stand for long-range
pair > 500 kb), while the blue lines for short-range (distance < 50kb) and the green lines for middle-range {distance spanning 50-500kb). The black

texts are the gene names of corresponding loci.
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Welcome to the IHEC Data Portal

You may select IHEC datasets in these charts to view tham in the Data Grid. Alternatively you can download or display them in 2 Genome Browser.
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Region search

Enter any one of human Gene name, Symbol, Synonyms, Gene ID, HGNC ID, coordinates, rsid, Ensemble ID

No annotations found

| searcn |

Region search

Enter any one of human Gene name, Symbol, Synonyms, Gene ID, HGNC ID, coordinates, rsid, Ensemble ID

rz5964959

Success

Searched coordinates: chr7:50473261-50473261
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HaploReg v4

Bioinformatics Tools

E=BROAD

INSTITUTE

HaploReg is a tool for exploring annotations of the noncoding genome at variants on haplotype blocks, such as candidate regulatory SNPs at disease-associated loci. Using LD information from the 1000 Genomes Project, linked SNPs
and small indels can be visualized along with chromatin state and protein binding annotation from the Roadmap Epigenomics and ENCODE projects, sequence consernvation across mammals, the effect of SNPs on regulatory motifs, and

the effect of SNPs on expression from eQTL studies. HaploReq is designed for researchers developing mechanistic hypotheses of the impact of non-coding variants on clinical phenotypes and normal variation.

Update 2015.09.15: Version 4 now includes many recent eQTL results including the GTEX pilot, four different options for defining enhancers using Roadmap Epigenomics data, and a complete set of source files for download and local
analysis. Older versions available: v3, v2, v1

J Build Query H Set Options H Documentation

Use one of the three methods below to enter a set of variants. If an r threshold is specified (see the Set Options tab), results for each variant will be shown in a separate table along with other variants in LD. If 2 is set to NA, only queried
variants will be shown, together in one table.

Query (comma-delimited list of rsIDs OR a single region as chriN:start-end). |rs6364969

or, upload a text file (one refSNP 1D per ling): Browse._.
or, select a GWAS: | ~
Query SNP: rs6064069 and variants with > >= 0.8
ohr posih3®) (o) gy varint Ref A jog feq ey frea cone  hiswnemaks histonemarks DNAse bound resuls changod gonos. func annox
7 50398132 0.96 0.99 [352447205 A G 023 02 013 031 BLD 4 tissues 4 altered motifs IKZF1 intronic
7 50393606 096 089 [s11978267 A G D22 022 013 03 EE =0 7 eQTL results Foxp1,Pax-6 IKZF1 intrenic
7 50398997 D96 089 rs6873210 G A 023 02 013 031 BLD BLD,PANC 7 eQTL results 4 altered motifs IKZF1 intronic
7 50399099 097 089 rsBOE0400 A G 023 022 013 031 BLD BLD,BLD ATF3Maf NF-E2 IKZF1 intronic
7 50401254 098 089 [s10278451 G T 023 02 013 03 7 eQTL results Sox IKZF1 3-UTR
7 50401853 098 099 rs11552047 ¢ T 02 02 012 0 BLD Nr2e3,Zec IKZF1 I-UTR
7 50402283 098 089 [s11980379 T C 023 02 012 03 BLD THYM 8 eQTL results NF-E2 IKZF1 3-UTR
7 50402678 098 089 [5200338223 CCT 023 022 012 03 BLD 12 altered motifs IKZF1 3-UTR
7 50402680 D96 089 rs33099320 T TC 023 02 012 031 BLD 10 altered motifs IKZF1 3-UTR
7 50402906 D98 099 rs4132601 T G 023 02 012 03 BLD 2 eQTL results IKZF1 I-UTR
7 50403915 099 1 1511980407 G A 022 02 012 030 BLD 7 eQTL results Pousfi IKZF1 3-UTR
7 50404626 1 1 1562445866 G A 022 02 012 030 BLD 12 tissues CTCF,RAD21 NRSF IKZF1 I-UTR
7 50405144 1 1 c T 02 02 012 030 EEE 50 THYM, SPLN BLD,BLD CHOP:CEBPalpha
7 50405553 1 1 ] A G 023 022 012 030 EXE ¢ tissuss BLD,BLD,BLD NFKB 7 eQTL results Pdx1,ZBTB33
7 50405592 097 1 rs6856014 T C 022 02 012 030 B - tissues BLD NFKB Myc,RFX5 SREBP
7 50406172 1 1 [528462675 A G D22 022 012 030 4 tissues BLD,BLD
7 50407229 D98 1 1s150935798 CA C 011 021 012 030 4 tissues PLCNT, THYM BDP1,SREBP
7 50407232 098 1 15200342481 GC G 011 021 012 030 4 tissues PLCNT, THYM HDAC2,NF-|
7 50407623 1 1 1510264380 T C 02 02 012 030 BLD,THYM,BLD 7 eQTL results
7 50408133 0ge 1 [528696237 cC G 018 02 012 030 EEE L0, THYM
7 50409446 0er 1 1510230978 G A 013 02 013 030 4 altered motifs
7 50408515 098 1 1510272724 T C 018 02 013 030 THYM,PANC 7 eQiTL results 9 altered motifs
7 50409316 097 089 rs17133805 T G 018 02 013 030 EX G tissuss BLD,BLD,BLD HNF4
7 50409913 D98 099 rsB2446869 G A 012 021 013 030 EID G tissues 5 fissues TCF12 6 altered motifs
7 50409969 097 089 rs17133807 c A o012 0z o1 o3 [ EE G fissues & tissues 4 bound proteins 7 eQTL resulis CTCF,HEN1
7 50410929 083 097 rs1110701 A G D27 025 013 032 G lissues 4 tissues 7 eQTL resulis 4 altered motifs
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Conclusions

GWAS has fulfilled the aim of unraveling disease biology more than providing
markers for disease prediction

Unexpected results in gene deserts and other intergenic regions shed light on
the function of these non-coding regions

What used to be called “junk DNA” codes for non-coding RNA and involved in
chromatin interactions

Non-coding genetic variants modify the function of regulatory elements as
crucially as coding variants alter protein structure

Projects like ENCODE, NIH Epigenomics Road Map and BluePrint provide
sufficient data to examine effects of genetic variation
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Conclusions

The data indicate that the target gene of a genetic variation may be far away
from it (even on a different chromosome); the nearest gene is unlikely to be
the target gene

The target genes are usually tissue-specific

The candidate genes involved in a disease process may not have a variation of
itself implicated in the disease development
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