HLA Complex

Genetics & Biology
M. Tevfik DORAK

Environmental & Occupational Health
College of Public Health
Florida International University

Miami, USA
http://www.dorak.info

Mount Sinai Medical Center
Department of Pathology
Miami Beach, FL

December 1, 2011

FLORIDA
INTERNATIONAL
UNIVERSITY


http://www.humigen.org/

Part ]

Why is the HLA complex so complex?

What are the unique characteristics of the HLA
complex?

Immune and non-immune components of the HLA
complex
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Clinical utility of HLA typing
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GENETIC BASIS OF SUSCEPTIBILITY TO
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IN the study of the genetic basis of cancer, a number of

marker genes have been used in attempts to locate within
the genome the sites responsible for susceptibility to the
development of various tumours. Experimentally a few
genes have, in fact, shown a weak influence upon susceptis
bility (reviewed by Law 1954, Heston 1960) of the same
order of magnitude as the observation of a weak but
significant association in man between the blood-group-A
phenotype and susceptibility to carcinoma of the stomach
(Aird et al. 1953). In laboratory animals, the only gene
known to exert a strong influence upon tumorigenesis is
WY (viable dominant sporting). In all mice homozygous
for this allele invasive ovarian adenomas develop (Russell
and Fekete 1958). These W'V animals have multiple
abnormalities, including macrocytic anzmia, and the
development of ovarian tumours is preceded by extensive
pathological changes in the ovaries. Similarly, certain
human diseases that predispose to malignancy may be
determined by single genes (polyposis coli, xeroderma pig-
mentosum, neurofibromatosis—see Sorsby 1953). Thus,
with the possible exception of retinoblastoma, which often
has a familial incidence indicating monofactorial deter-
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Inbred mouse strains are homozygous for H-2 haplotypes
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Heterozygosity for the susceptibility haplotype
did not have an effect




Why is There an HLA Association
in Almost Any Disease?

The very first MHC association was with leukemia in mice (1964)
and with Hodgkin disease in humans (1967)

Many cancers show associations and some (NPC) even show
linkage to MHC

CAH and HH genes were first located in and around HLA by
association studies

Autoimmune disorders and infectious diseases show the
strongest associations

Besides, sarcoidosis, birth weight, obesity, long QT syndrome
and many others show associations with HLA alleles or
haplotypes
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HLA COMPLEX 1994

6788  Colloquium Paper: Ayala et al. Proc. Natl. Acad. Sci. USA 91 (1994)
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FiG. 1. Location of some polymorphic genes within the HLA complex in human chromosome 6. There are two sets of genes, class I and
class II, separated by a region with unrelated genes. The number of alleles known at a locus is written below the box that indicates the location
of the gene,
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HLA COMPLEX 2001
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HLA COMPLEX 2001
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http://www.nature.com/nrg/journal/v5/n12/poster/MHCmap/poster.pdf
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Figure 2 | Distribution of major histocompatibility complex (MHC) paralogues in the human genome. The approximate
positions of the putative paralogues are colour-coded according to confidence level: LO column represents BLAST similarity
matches with a p-value of less than 10~ (green); L1 column represents ELAST matches after filtering out domain-only matches
(blue); L2 column represents BLAST matches after filtering for conserved gene structure'™ (purple): L3 column represents BLAST

matches that passed both filtering steps (red).
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Gene map of the extended human MHC
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http://www.nature.com/nrg/journal/v5/n12/poster/MHCmap/index.html

Human Major Histocompatibility Complex

Most gene-dense region in the genome

Table 1. Human Genome Top 10 Gene-Dense Regions

GoldenPath lecation Region WGL  %orepeats  Genes/Mb Comments

chirg:31 25000132 500000 HLAC-HLADRR3 47 47 43.8 Includes MHC dass Il region
chré: 25500001 -28500000 FLI20048-BTH 243 41 43 44.0 Includes histone families

chrl 2:6250001-7 250000 FLJ10665-F%R1 46 41 43.1 Includes C04, complement 1

chrl 7:32000001 40000000 KRT23-ACLY 45 44 43.0 Includes keratin families

chir1@: 532 50001 -5 5000000 ELSPEP1-TCBAPGT 58 52 57 423 Includss CO37

chrl &:250001-1 500000 DEFZP7& 10021 1-KIAADEE a0 28 40.8 o rich

chrl1:250001-1500000 AP2A-HCCAZ 53 36 4.2 Cap in sequence; includes IRF?, TOLLIP
chrl 7: 7000001 -S000000 ASGR1-PERT 51 43 30.0 Includes THSF12, 13; CDES; TPS3
chr:150500001-151500000  DUSPO-CARS 53 43 30.0 Includes G&PD; IRAK]

chrl9: 582 50001 -802 50000 OSCAR-RDHT 2 49 53 360 Includes KIR, ILT, LILR families

Lising a window offset of 250 kb, the number of genes per megabase and G content were caloulated as described in Figure 1. If a region appeared
in the top 20 hits more than once (e.g., chrl &250001-2 50000 and chrl & 50000011, 500000}, the regiors were combined. “Region” indicates the
outermaost genes within the GoldenPath span.

Xie, 2003 (www)


http://www.genome.org/cgi/reprint/13/12/2621

Linkage Disequilibrium

HLA-B47 association with congenital adrenal
hyperplasia (Dupont et al, Lancet 1977)

HLA-B14 association with late-onset adrenal
hyperplasia (Pollack et al, Am J Hum Genet 1981)

Is congenital adrenal hyperplasia an immune
system-mediated disease?



Linkage Disequilibrium

HLA-B47 association with congenital adrenal
hyperplasia is due to deletion of CYP21A2 on
HLA-B47DR7 haplotype

HLA-B14 association with late-onset adrenal
hyperplasia is due to an exon 7 missense
mutation (V281L) in CYP21A2 on HLA-B14DR1
haplotype



Non-HLA Genes of the HLA Complex Involved
in Fundamental Cellular Processes

- transcriptional or translational machinery (GTFZ2HY, TORTD POUSHT, ZNRDT,
LE5MZ BATY, ROBP, VARS, PBXZ DOM3Z, SKIVZL, DHXTE, GNLT, RPS1{5,
MRPS{88;, CESNKZE, TRIMZ2E , BROZ PHFT, CREBLT BT RXRB, STHIQ
ABFT)

- house-keeping (DOM3Z, NEUT, AGPATT, CLICT, CSNKZ2E)

- biosynthesis, electron transport and hydrolase activity (FPTZ2 DDAHZ,
ATPEVIGZ)

- protein—protein interactions, chaperone function, ubiquitination and
signalling (287812 (CHorfdd) AHSFATA HSPATB, BAT3, BATS, AGAR, RNFS,
FRABPL LSTT THNXE and NOTCH4)

- genome surveillance machinery and chromosome stability (AM0Cf, MSHE
GTFZHA DA UBR OO TA-)

- apoptosis (BATZ BATS [ TAATH IERS DAXX DOR{, COKNTA-)

- cell eycle regulation (TCF18, ZNROT, CSNKZE, CLICT, FKRPL, -CON 1A

- celldivision (K</FC 1)

- meiosis (MSHE)

- spermatogenesis or sperm motility (SHIV2E CLICT RSPATE, -TCFT1-)

- embryonic expression (DAXY HSPATAL, NOTCOH)

- multidrug resistance (ZNFOT, MSHE TAFPT, TAPZ)

- angiogenesis (NOTOHE -EONT-)

- proto-oncogenes (NOTCHY, PBXZ)

- hormonal effects (CYPZ{AZ HS501788)

- immunoregulatory role (T2 C4, CFB, LTA;, TNF, LTB, CLICT, IERS, MYLIF, UBL;
FRBPL, TART, TARPZ TAFBF, FSMBSE PSMBS, NEUM, PRSSTE, HLA-E HLA-
O0NA, HEADNE, HLADODA, HEA-DOB, -CDKNTA-)

- inflammation (L. 74, TNF LTH; AIFT, NFHCRILA, BATH DOAHZ CUIC T, ABCFT)

- radioresistance (FXBPL MO



Transcription Factors in the Extended MHC
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Figure 1. Map of the extended human MHC. The map (not to scale) shows selected genes and gene clusters of the extended MHC (xMHC) from telomere (tel, left) to
centramere (cen, right) on the shart arm of human chromosome 6. The total number of genes encoded within the xMHC is 5878 [26]. The five subregions making upthe xMHC
span ~ 7600 kilobasepairs (Kb) and are indicated by arrows below the map, with their approximate |lengths. The following types of genes are mentio ned within the review:
class | genes (red), class || genes (orange), OR gene clusters (dark green), V1R pseudogene custer (violet), zine finger genes (pink, only one of theseveral locations of ZMF loci
is shown) and TF genes (blue). The red arrows indicate those TF genes whose location within the xMHC is conserved evolutionarily from fish to mammals. The following
genes with their symbols are depicted: HFE, hemochromatosis; ORZB2, olfactory receptor, family 2, subfamily B, member 2; ORZW1, olfactory receptor, family 2, subfamily
W, member 1; GTF2H4, general transcription factor IIH, polypeptide 4; POUSFT, Pou domain, class 5, transcription factor 1; TCF19, transcription factor 19; C2, complement
component 2; C48, complement component 48; FEXZ, pre-B-cell leukemia transcription factor 2; 8R02, bromodomain-containing protein 2; AXAB, retinoid X receptor,
fi; FHF1, FHD finger protein 1. The POUSFT gene is also known as Octd in the mouse. Further details can be found in recently published reviews [2655].



http://dx.doi.org/10.1016/j.it.2005.07.003
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Peculiar Features of the HLA region

 Most gene dense

e Paralog regions and genes

« CNV and structural variation

« Very high linkage disequilibrium over very long
range resulting from conserved extended haplotypes
(CEH)

« Extremely polymorphic

» Very strong selective pressures

* Extreme geographical, racial and ethnic differential in
allele frequencies

« SO0 many lineages and groupings of alleles &
haplotypes

« S0 many functional dimorphisms or supertypes with
no single corresponding SNPs
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@ HLA nomenclature


http://hla.alleles.org/nomenclature/naming.html
http://hla.alleles.org/nomenclature

NOMENCLATURE UPDATE

Tissue Antigens ISSN 0001-2815

Nomenclature for factors of the HLA system, 2010

S. G. E. Marsh, E. D. Albert, W. F. Bodmer, R. E. Bontrop, B. Dupont, H. A. Erlich, M. Fernandez-Vina,
D. E. Geraghty, R. Holdsworth, C. K. Hurley, M. Lau, K. W. Lee, B. Mach, M. Maiers, W. R. Mayr,
C. R. Miiller, P. Parham, E. W. Petersdorf, T. Sasazuki, J. L. Strominger, A. Svejgaard, P. |. Terasaki,

J. M. Tiercy & J. Trowsdale

Table 13 Numbers of alleles with official names at each locus by 31st

December 2009

Locus Number of alleles
HLA-A 985
HLA-B 1543
HLALC 626
HLA-E 9
HLA-F 21
HLAG 46
HLA-DRA e
HLA-DRE1 762
HLA-DRBE2 1
HLA-DREZ2 52
HLA-DRE4 14
HLA-DRBS 19
HLA-DREG e
HLA-DRBY 2
HLA-DREE 1
HLA-DRES 1
HLA-DOAT 35
HLA-DQE1 107
HLA-DPAT 28
HLA-DPB1 138
HLA-DOA 12
HLA-DOB a
HLA-DMA 4
HLA-DMEBE 7
TAP1 7
TAP2 4
MICA, 312}
MICE 30

b. New Allele Sequences

A total of 2558 HLA alleles have been named since
the last report (18). The newly named alleles are shown
in bold typeface in Tables 2 to 11. For HLA class I, 616
HILA-A, 913 HLA-B, 446 HIA-C, four HLA-E, 19 HIA-
F, 31 HLA-G, 12 HLA-H, nine HILA-J, six HLA-K, five
HLA-L, four HLA-P and three HLA-V alleles were named,
making a total of 3249 class | alleles with official names.
For HLA class II. 368 HILA-DRBI, 12 HLA-DREBE3, one
HILA-DRB4, one HLA-DRBS, seven HLA-DQAI, 45 HILA-
DQBI, six HLA-DPAI, 22 HLA-DPEI, one HLA-DMEB and
four HLA-DOA alleles were named, making a total of EES;
class II alleles with official names.

(Wwww)


http://onlinelibrary.wiley.com/doi/10.1111/j.1399-0039.2010.01466.x/pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1399-0039.2010.01466.x/pdf

IMGT/HLA Database

IMGT/HLA Allele Ethnicity Tool

This tool allows you to retrieve information on the reported ethnicity of individuals for whom allele
sequences have been submitted to the IMGT/HLA Database. To search enter the start of the allele name
(i.e; A% A*01, A*01:01:01:01, and any previous designations). The search tool will then retrieve all relevant
hits. Wildcards will automatically be added to the search and the search tool is not case sensitive.

Afull list of all alleles for each locus is available from the following links; Class | list, Class Il list, other [oci

Allele Searches

Search for: | s ][ Reset ]

Description of Ethnic Origin
The basic structure of the qualifier is shown below.
+ Najor Ethnic Group - Tribe or Local Area, Country, Region

The first part of the qualifier represents the general ethnic group of the cell donor. This splits all entries into
9 groups, providing a general classification of the major ethnic arigin of the cell.

Ethnic Group Description

American Indian Peoples resident in the Americas before the arrival of Europeans

Australian Pre-Eurcpean inhabitants of Australia

Aboriginal

Black People whose historical origin is sub-Saharan Africa

Caucasoid People with historical origing in Europe, North Africa or Southwestern Asia, including Indian
sub-continent

Hizpanic People historically of mixed Mediterranean Caucasoid, American Indian race.

Mixed Cell donor is of mixed race, the qualifier will where possible provide further details

Oriental People with historical origing in East Asia.

Pacific Islander Aboriginal inhabitants of Melanesia, Micronesia and Polynesia

Unknown Ethnic origin of the cell donor is unknown



http://www.ebi.ac.uk/imgt/hla/ethnicity.html

HLA Polymorphisms

« Highest resolution DNA level HLA alleles: Related to
transplantation success, susceptibility to diseases
related to antigen presentation (autoimmune disorders,
Infectious diseases)

« Serological HLA antigens: Relevant to
transplantation and disease associations

 HLA epitopes (Bw4/Bw6; C1/C2): Interactions with
NK cell

 Functional supertypes: Involved in antigen
presentation

« Genetic supertypes: Represents ancestral lineages



HLA Polymorphisms

Current disease association studies are mainly
concerned with high resolution allelic associations and
may miss out a lot of information

Examination of functional groupings and lineages
rather than individual alleles may be a more powerful
approach



Functional multi-allelic HLA polymorphisms

Functional supertypes

Cross-reactive groups (CREGS)

Codon 114
Codon 116

Bw4/Bw6
epitopes

Codon 114 ci/c2
Codon 116 epitopes

Functional
supertypes

Phylogenetic
lineages Codon 86 Codon 57

—

N

HLA- HLA- HLA-
DRB3/4/5 DRB1 DQB1




Functional multi-allelic HLA polymorphisms

4+ digit alleles

forming Specificities Phylogenetic groups
SNPs supertypes (2 digit)
DRB1*01
DRB1*03 DRB3
DRB1*04 DRB4
DRB1*07 DRB4

DRB1*08 DRB3 (08)

DRB1*09 DRB4

DRB1*10
DRB1*11 DRB3

DRB1*12 DRB3

DRB1*13 DRB3

DRB1*14 DRB3

DRB1*15 DRB5
DRB1*16 DRB5

VTV TT TRy
vV TV Ty



ID HLA-B_1 HLA-B_2 Bw4 Bw6 114 Asn 114 Asp 116 Tyr 116 _Asp 116 Ser 116 Leu 116_Phe st_b07 st_b08 st_b27 st_b44 SNP1 SNP2 SNP3

1 0702 14:01 00 11 01 01 01 00 0o 0o 01 01 0o 01 0o 01 00 01
5 18:01 44:02 01 01 0o 11 0o 01 01 0o 0o 0o 0o 0o 11 11 0o 0o
2 08:01 08:01 00 11 11 0o 11 00 0o 0o 00 0o 11 0o 0o 0o 11 11
3 44:02 4501 01 01 01 01 0o 01 0o 01 0o 0o 0o 0o 11 01 0o 0o
4 08:01 14:02 00 11 11 0o 01 00 0o 0o 01 0o 01 01 0o 0o 01 01

ID HLA-B_1 HLA-B_2 Bw4 Bw6 114 Asn 114 Asp 116 Tyr 116 Asp 116 Ser 116 Leu 116 Phe st_b07 st_b08 st_b27 st_b44 SNP1 SNP2 SNP3

1 07:02 14:01 00 11 a1 01 01 00 0o 00 01 01 0o a1 0o 01 0o 01
5 18:01 44:02 01 01 oo 11 0o 01 01 00 0o 00 00 0o 11 11 oo oo
2 08:01 08:01 00 11 11 00 11 00 0o 00 0o 00 11 0o 0o oo 11 11
3 44:02 4501 01 01 01 01 oo 01 oo 01 oo 0o 00 oo 11 01 oo oo
4 08:01 14:02 00 11 11 00 01 00 0o 00 01 00 01 01 0o oo 01 01
HLA-B alleles  Bw4/Bwé Codon 114 Codon 116 Functional supertypes HLA region SNPs
ID HLA-B_1 HLA-B 2 Bw4 Bw6 114 Asn 114 Asp 116 Tyr 116 Asp 116 Ser 116 Leu 116 Phe st_b07 st_b08 st b27 st b44 SNP1 SNP2 SNP3
1 07:02 14:01 00 11 01 01 01 oo oo oo 01 01 oo 01 00 01 oo 01
5 18:01 44:02 01 01 0o 11 00 01 01 oo 0o oo oo oo 11 11 oo oo
2 08:01 08:01 00 11 11 00 11 oo oo oo 0o oo 11 oo 00 oo 11 11
3 44:02 45:01 01 01 01 01 00 01 oo 01 0o oo oo oo 11 01 oo oo
4 08:01 14:02 00 11 11 00 01 oo oo oo 01 oo 01 01 00 oo 01 01

A hypothetical dataset illustrating the approach to data analysis for detection of proxy markers for functional
polymorphisms in the HLA-B locus. Each HLA-B genotype is converted to corresponding polymorphisms and coded
as 1 for possession of the amino acids shown for positions 114 and 116, or for belonging to the supertype group
(st_b07 etc.). SNP genotypes will be coded for the presence of variant alleles (00 = wild type, 01 = heterozygote, 11 =
variant homozygote). In this hypothetical example, SNP1 shows an absolute correlation with aall4 Asp (114 _Asp);
SNP2 with supertype B08 (st_b08) and SNP3 with aall6 Tyr (116 _Tyr). CREGs are not included in this example, but
will be assessed at this stage of the project.



Expressed HLA-DRB gene content of HLA class 1l haplotypes
(second DRB gene determines the ancestral lineage)

class || class lll class|
L

DP region DQregion DR region

08

Franca Blising,” Stefan Frischbutter,'

Figure 1. Genomic organization of the HLA complex on the human
chromosome 6. Top, The HLA-DR region is embedded between the
HLA-DO and the HLA class III region. Middle, Enlargement of the
DR region, showing the 5 allele lineages that encode the 10 different
DRB1 superhaplotypes (DRI-DR10). Membership in the allele lin-
eages is defined by the DRBI allele. Bottom, Enlargement of the allele
lineage, showing the functional DRBI alleles, the DRB4 and DRA
genes, as well as pseudogenes encoded by this particular allele lineage.
Promoters are shown as large arrows, the DRB4 splice variant is
indicated by a solid star, and pseudogenes are shown in gray typeface.

Progression in Rheumatoid Arthritis

Differential Expression of HLA Class IT Genes
Associated With Disease Susceptibility and
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Table 3 | A minimal set of immune-system genes in the human xMHC

Category Genes
Antigen processing/ HLA-A, -B, -C, -DMA, -DME, -DOA, -DOB, -DFEAT,
presentation -DPE1,-DQAT, -DQAZ, -DQB1, -DQB2, -DRA,

-DRET, -DRB3, -DRB4, -DRBS5; PRS516; PSMES,
PSMB9; TAP1, TAPZ, TAPBP; UBD

Immunoglobulin superfamily  AGER; BTN1AT, BINZAT, BTNZ2AZ, BTNZAS,
BTN3AT, BTN3AZ, BIN3A3, BTNLZ; C6orf25; MOG

Inflammation ABCF1: AIFT; DAXXG [ER3; LSTT: LTA, LTB: NCR3: TNF
| eukocyte maturation DDAHZ; LYBGSEB, LYBGSEC, LYEGED, LYEGEE, L Y6GEC
Complement cascade BF; C2, C4A, C4B

Non-classical MHC class|  HLA-E, HLA-F, HLA-G; HFE

Immune regulation NFKEBILT, RXEEB, FKBFL

Stress response HSEATA, HSPA1B, HSPATL; MICA, MICB

Most of these genes have established functions for innate or adaptive immunity; genes with
remote links have been excluded. Some genes have been included because they are related by
sequence to a known immune gene family but the precise function of these is still to be
determined. The largest class of immune system genes is involved with antigen processing and
presentation, and includes classical class | and Il molecules, as well as some of the antigen
processing machinery for loading peptides onto class | molecules. xMHC, extended major
histocompatibility complex.

na] urc Gene map of the extended human MHC
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Figure 2. Structure of HLA Class | and Class Il Molecules.

Beta,-microglobulin (8,m) is the light chain of the class | mole-
cule. The a chain of the class | molecule has two peptide-bind-
ing domains (a1 and a2), an immunoglobulin-like domain {(a3),
the transmembrane region (TM), and the cytoplasmic tail. Each
of the class Il @ and B chains has four domains: the peptide-
binding domain (a1 or g1), the immunoglobulin-like domain
(@2 or 2), the transmembrane region, and the cytoplasmic tail.
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Antigen processing and presentation
Pamela Wearsch and Peter Cresswell
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B Extracellular self or foreign protein
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Immune Nonresponsiveness is a Recessive Trait

Histocompatibility-Linked
Immune Response Genes

A new class of genes that controls the formation
of specific immune responses has been identified.

Baruj Benacerraf and Hugh O. McDevitt

Science, New Series, Vol. 175, No. 4019. (Jan. 21, 1972), pp. 273-279

Association studies should examine recessive genetic model
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Enhanced immunological
surveillance in mice heterozygous
at the H-2 gene complex

THE major histocompatibility (H) antigens of higher animals
show extreme genetic polymorphism equalled, in higher
vertebrates, only by that associated with the immunoglobu-
lins’. Maintenance of such a high rate of variability implies
evolutionary advantage for heterozygotes in the HL-A
system for man, or at the H-2 gene complex in mice®®. We
propose a possible selective mechanism, based on the
realisation that immunological surveillance function
(defined here as recognition and elimination of modified host
cells by sensitised thymus-derived lymphocytes (T-cells) may
be considerably enhanced in mice heterozygous at the H-2

gene complex.
PETER C. DOHERTY

RoLF M. ZINKERNAGEL

Department of Microbiology,
John Curtin School of Medical Research,
Canberra, ACT, Australia

Received May 5; accepted May 21, 1975.
Narure Vol. 256 July 3 1975
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HLA Homozygosity

Immune response is a dominant trait and lack of
Immune response Is recessive

Conventional HLA and disease association studies
examine the dominant model and current SNP-based
association studies are analyzed for additive model

Data from HLA region should always be analyzed for
recessive model since dominant or additive model may
not be able to unmask an association with
homozygosity



Table 1 | Gene (super) clusters within the xMHC

Cluster type Total number Number of
of loci
Gene superclusters
Histone 66 65
HLA class | 26 9
tRNA 157 151
Butyrophilin 8 8
Olfactory receptor® 34 14
Zinc finger protein 36 26
Gene clusters
Solute camier 17A 4 4
\Vomeronasal receptor 5 0
Tumour necrosis factor 3 3
Lymphocyte antigen-6 5 5
Heat shock protein 3 3
HLA class II* 24 15

protein-coding loci

Number of pseudo-
gene/transcript loci

11
17
6
0
20
10

o o o o g o

“The distribution of cifactory loci between the gene and pseudogene categories is dependent on
haplotype. ¥The number of loci in the HLA class Il supercluster varies between different haplotypes.
Please see text for details on each individual cluster. xMHC, extended major histocompatibility complex.
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Gene map of the extended human MHC

Roger Horton, Laurens Wilming, Vikki Rand, Ruth C. Lovering, Elspeth A. Bruford,
Varsha K. Khodiyar, Michael ). Lush, Sue Povey, C. Conover Talbot Jr. , Mathew W. Wright,
Hester M. Wain, John Trowsdale, Andreas Ziegler and Stephan Beck.
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Non-HLA Genes of the HLA Complex Involved
in Fundamental Cellular Processes

- transcriptional or translational machinery (GTFZ2HY, TORTD POUSHT, ZNRDT,
LE5MZ BATY, ROBP, VARS, PBXZ DOM3Z, SKIVZL, DHXTE, GNLT, RPS1{5,
MRPS{88;, CESNKZE, TRIMZ2E , BROZ PHFT, CREBLT BT RXRB, STHIQ
ABFT)

- house-keeping (DOM3Z, NEUT, AGPATT, CLICT, CSNKZ2E)

- biosynthesis, electron transport and hydrolase activity (FPTZ2 DDAHZ,
ATPEVIGZ)

- protein—protein interactions, chaperone function, ubiquitination and
signalling (287812 (CHorfdd) AHSFATA HSPATB, BAT3, BATS, AGAR, RNFS,
FRABPL LSTT THNXE and NOTCH4)

- genome surveillance machinery and chromosome stability (AM0Cf, MSHE
GTFZHA DA UBR OO TA-)

- apoptosis (BATZ BATS [ TAATH IERS DAXX DOR{, COKNTA-)

- cell eycle regulation (TCF18, ZNROT, CSNKZE, CLICT, FKRPL, -CON 1A

- celldivision (K</FC 1)

- meiosis (MSHE)

- spermatogenesis or sperm motility (SHIV2E CLICT RSPATE, -TCFT1-)

- embryonic expression (DAXY HSPATAL, NOTCOH)

- multidrug resistance (ZNFOT, MSHE TAFPT, TAPZ)

- angiogenesis (NOTOHE -EONT-)

- proto-oncogenes (NOTCHY, PBXZ)

- hormonal effects (CYPZ{AZ HS501788)

- immunoregulatory role (T2 C4, CFB, LTA;, TNF, LTB, CLICT, IERS, MYLIF, UBL;
FRBPL, TART, TARPZ TAFBF, FSMBSE PSMBS, NEUM, PRSSTE, HLA-E HLA-
O0NA, HEADNE, HLADODA, HEA-DOB, -CDKNTA-)

- inflammation (L. 74, TNF LTH; AIFT, NFHCRILA, BATH DOAHZ CUIC T, ABCFT)

- radioresistance (FXBPL MO



Non-HLA Genes and Breast Cancer

Gene / function

Relevance to breast cancer

UBD 2 {ubiguitin D /RAT10) / ubiguitinatian

interacts with TPS3, plays roles in genomic stability, apoptosis,
cell oycle regulation; overexpressed in breast cancer

CYP21AZ © (cyvtochrome P450, family 21,
subfamily &)/ 21-hydroxylase enzyme
activity

invalved in sex steroid biosynthesis; its common mutations may
increase production of adrenal sex steraids which may be
converted to estrogens, especially in post-menopausal period

DDR1 b (discoidin domain receptor 1;
CD167; mammary carcinoma kinase 10
SMCKLDY [/ receptor tyrasine kinase

invalved in mammary gland development and mammary cell
adhesion; interacts with FS3 in apoptosis respanse

MOTCH4 < (Notch homalog 43 / controls cell
fate decisions

a regulator of cell survival and cell praliferation in the
development of the mammary aland; modulates angiogenesis

MDC1 b (mediator of DMA damage
checkpoint 1) / DNA& damaae checkpaoint

OMA damage sensing and repair

MSHS © imutsS homolog 5) / DRA mismatch
repair

invalved in meiotic recombination processes; mediates DA
alloylation talerance

GTF2H4 b {(TFIIH; general transcription
factor IIH4) / transcription factor

general transcription factor; also participates in nucleotide
EXCISIoN repair

DAXX d (death associated protein &) /
regulation of apoptaosis

required for stress-induced cell death; enhances Fas-mediated
apoptosis; modulates the function of Mdm2 which is important
for PS3 activation in response to DNA damaage

2 in HLA extended class I region; b

in class I region; © in class III region; d in extended class II region. CYP21A2,

MOTCH4 and MSH% are HLA complex class III genes, others are located in class I or class II regions.
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Receptor protein tyrosine kinase DDR is up-regulated by p53 protein

Shirou Sakuma®*, Hideyuki Sayab, Mitsuhiro Tada®, Mitsuyoshi NakaoP,

Toshiyoshi Fujiwara®, Jack A. Rothd, Yutaka Sawamura®, Yumiko Shinohe?®, Hiroshi Abe®
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The EMBO Journal Vol. 22 No.6 pp. 12851301, 2003

p53 induction and activation of DDR1 kinase
counteract pb3-mediated apoptosis and influence
p53 regulation through a positive feedback loop

Pat P.Ongusaha, Jong-il Kim', Li Fan
Tai W.Wong®, George D.Yancopoulos®,
Stuart A.Aaronson? and Sam W.Lee®
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Discoidin Domain Receptor 1 Tyrosine Kinase Has an Essential
Role in Mammary Gland Development
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MHC & DNA Repair

[] 1:Tissue Antigens. 1981 Jan;17({1):104-10.

DNA repair, H-2, and aging in NZB and CBA mice.

Hall KY, Bergman K, Walford RL.

Current evidence suggests that a correlation exists between the capacity to perform
excision repair of UV-induced DMNA damage and maximum lifespan in different species.
Preliminary evidence has also indicated differences of DMA repair capacities in
lymphocytes of several strains of mice congenic at the H-2 locus. It is known that the
H-2 system influences maximum lifespan potential in mice. In the present studies excision
repair of UV-induced DNA damage, but not gamma-induced damage, was found to
correlate the mean survival in the adult inbred mouse strains NZB and CBA, using PHA
stimulated splenic lymphocytes. Furthermore, in (NZB ¥ CBAIF2 hybrid with adult
progeny the level of DNA repair of UV-induced damage corresponded to the H-2 allele
{H-2d/2d from NZB or H-2b/2b from CBA) inherited from the parental strain. These
studies suggest the possibility of a tricornered relationship between the main
histocompatibility complex, one form of DMNA repair, and lifespan within the species.

[] 1: Tissue Antigens. 1979 Oct; 14(4):3356-42.

Influence of genes associated with the main histocompatibility complex on
deoxyribonucleic acid excision repair capacity and bleomycin sensitivity in mouse

lymphocytes.

Walford RL, Bergmann K.

In sets of mice congenic at H-2 and upon two backgrounds, and selected according to
known differences in strain-specific lifespans, DNA repair efficiency in spleen cells was
compared by two techniques: excision repair capacity following Uv-irradiation, and
bleomycin sensitivity. Significant differences between certain congenic partner sets were
noted with both techniques, suggesting that the main histocompatibility complex

influences DMA repair capacity.
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DNA damage
checkpoint machinery

In response to DNA damage, ATM and ATR
phosphorylate histone H2AX and thereby
facilitate the recruitment and
phosphorylation of mediators such as MDC1,
53BP1, BRCAL, and the MRE11-RAD50-NBS1
complex. Stalling of the DNA replication fork
results in the recruitment of the ATR-ATRIP
complex by RPA. In turn, the formation of
nuclear foci of mediator complexes
promotes transmission of the DNA damage
signal to downstream targets such as Chkl1,
Chk2, FANCD2, and SMC1. The PCNA-like
RAD1-RAD9-Hus1l complex, the RFC-like
RAD17, and Claspin may collaborate in
checkpoint regulation by detecting different
aspects of a DNA replication fork. The
mismatch repair proteins MLH1 and MSH
also implicate in the activation of ATM-Chk?2
pathway. The kinases Chkl1l and Chk2
phosphorylate effectors such as p53,
CDC25A, and CDC25C and thereby delay cell
cycle progression or induce senescence or
apoptosis via activation of the G1-S, intra-S,
or G2 cell cycle checkpoints. Thus, these
DNA damage checkpoint mechanisms
cooperate with DNA repair machinery to
suppress genomic instability and cancer.

Motoyama, 2004 (www)



http://dx.doi.org/10.1016/j.gde.2003.12.003

MDC1 is required for the
intra-S-phase DNA
damage checkpoint

Michal Goldberg~+, Manuel Stucki* 7, Jacob Falck:, Damien D’ Amours~,
Dinah Rahmans, Darryl Pappins, Jiri Bartek: & Stephen P. Jackson™

* The Wellcome Trust/Cancer Research UK Institute of Cancer and Developmental
Biology and Department of Zoology, University of Cambridge, Cambridge
CB2I0R, UK

t Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49,
DEK-2100, Copenhagen, Denmark

§ Department of Proteomics, Imperial College School of Medicine, Hammersmith
Campus, London W12 ONN, UK

T These authors contributed equally to this work

FIU

FLORIDA
INTERNATIONAL
UNIVERSITY

MDC1 is coupled to activated
CHK2 in mammalian DNA
damage response pathways

Zhenkun Lou, Katherine Minter-Dykhouse, Xianglin Wu & Junjie Chen

Department of Oncology, Mayo Foundation, Rochester, Minnesota 55905, USA



nature

cell biology
DAXX gene is within the HLA
complex.

Critical role for Daxx in regulating Mdm?2

Jun Tang"’, Li-Ke Qu'’, Jianke Zhang®, Wenge Wang’, Jennifer S. Michaelson®, Yan Y. Degenhardt™*,
Wafik S. El-Deiry” and Xiaolu Yang'#

The tumour suppressor p53 induces apoptosis or cell-cycle
arrest in response to genotoxic and other stresses. In
unstressed cells, the anti-proliferative effects of p53 are
restrained by mouse double minute 2 (Mdm2), a ubiquitin ligase
(E3) that promotes p53 ubiquitination and degradation®. Mdm2
also mediates its own degradation through auto-ubiquitination.
It is unclear how the cis- and trans-E2 activities of Mdm 2,
which have opposing effects on cell fate, are differentially
regulated. Here, we show that death domain-associated protein
{Daxx)* is required for Mdm2 stability. Downregulation of

Daxx decreases Mdm2 levels, whereas overexpression of Daxx
strongly stabilizes Mdmz2. Daxx simultaneously binds to Mdm2
and the deubiquitinase Hausp, and it mediates the stabilizing
effect of Hausp on Mdm2. In addition, Daxx enhances the
intrinsic E3 activity of Mdmz2 towards p53. On DNA damage,
Daxx dissociates from Mdm2, which correlates with Mdm2
self-degradation. These findings reveal that Daxx modulates

the function of Mdm2 at multiple levels and suggest that the

Figure 1 Under non-stress conditions, Daxx associates with HAUSP and Mdm2, which results in
stabilization of Mdm2 and MdmX and direction of Mdm2 ligase activity toward p53 that, in tum, leads

disruption of the Mdm2-Daxx interaction may be important for to p53 ubiquitination and degradation. In response to DNA damage and phosphorylation, dissociation
t bl | of HAUSP, Daxx and p53 from Mdm2 occurs and the resulting Mdm2-MdmX complex is auto-
P53 activation in response to DNA damage. ubiquitinated and degraded. The remaining components (HAUSP, Daxx and p53) may rearrange to form

several hypothetical complexes, leading to different p53 functions.
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The proliferation-associated early response gene p22/PRG1 is a novel p53
target gene
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(in the 1980s, we did not know much about non-HLA genes)

But now we do!
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Why is the HLA complex so complex?

What are the unique characteristics of the HLA
complex?

Immune and non-immune components of the HLA
complex
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