Contents

<table>
<thead>
<tr>
<th>Contributors</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>00</td>
</tr>
<tr>
<td>Preface</td>
<td>00</td>
</tr>
</tbody>
</table>

1 An introduction to real-time PCR

Gregory L. Shipley

1.1 Introduction | 00 |
1.2 A brief history of nucleic acid detection and quantification | 00 |
1.3 Real-time quantitative PCR: a definition | 00 |
1.4 Practical and theoretical principles underlying real-time PCR | 00 |
1.5 Real-time PCR instrumentation – an overview | 00 |
1.6 Detection chemistries used in real-time PCR | 00 |
1.7 Performing a real-time RT-PCR experiment | 00 |
1.8 What lies ahead | 00 |

References | 00 |
Protocol 1.1 | 00 |
Protocol 1.2 | 00 |
Protocol 1.3 | 00 |
Protocol 1.4 | 00 |
Protocol 1.5 | 00 |

2 Data analysis and reporting

Pamela Scott Adams

2.1 Introduction | 00 |
2.2 Standard curves | 00 |
2.3 Preliminary assay analysis | 00 |
2.3.1 Amplification curves | 00 |
2.3.2 Baseline | 00 |
2.3.3 Threshold | 00 |
2.3.4 Proper controls | 00 |
2.3.5 Experimental samples | 00 |
2.3.6 Quantifying data | 00 |
2.4 Data reporting and statistics | 00 |

References | 00 |

3 Relative quantification

Michael W. Pfaffl

3.1 Introduction | 00 |
3.2 Relative quantification: The quantification is relative to what? | 00 |
3.3 Normalization 00
3.4 Mathematical models 00
3.5 Real-time qPCR amplification efficiency 00
3.6 Determination of the amplification rate 00
3.6.1 Dilution method 00
3.6.2 Fluorescence increase in exponential phase 00
3.6.3 Sigmoidal or logistic curve fit 00
3.6.4 Efficiency calculation in the exponential phase using multiple models 00
3.7 What is the right crossing point to determine? 00
3.8 Relative quantification data analysis and software applications 00
3.8.1 LightCycler Relative Quantification Software 00
3.8.2 REST 00
3.8.3 Q-Gene 00
3.8.4 qBASE 00
3.8.5 SoFAR 00
3.8.6 Dart-PCR 00
3.9 Conclusion 00
References 00

4 Normalization 00
Jim Huggett, Keertan Dheda and Stephen A. Bustin 00
4.1 Introduction 00
4.2 General error and directional shift 00
4.3 Methods of normalization 00
4.3.1 Sample size 00
4.4 Conclusion 00
References 00

5 High-throughput primer and probe design 00
Xiaowei Wang and Brian Seed 00
5.1 Primer and probe design guidelines 00
5.1.1 Primer specificity 00
5.1.2 Primer length 00
5.1.3 Primer GC content 00
5.1.4 Primer 3’ end stability 00
5.1.5 Primer sequence complexity 00
5.1.6 Primer melting temperature 00
5.1.7 Primer location in the sequence 00
5.1.8 Amplicon size 00
5.1.9 Cross-exon boundary 00
5.1.10 Primer and template sequence secondary structures 00
5.1.11 TaqMan probe design 00
5.1.12 Molecular beacon probe design 00
5.2 PrimerBank – an online real-time PCR primer database 00
5.2.1 Primer design algorithm 00
5.2.2 PrimerBank 00
5.2.3 Experimental validation of the primer design 00
5.3 Experimental protocol using PrimerBank primers 00
5.3.1 Reverse transcription (RT) 00
5.3.2 Real-time PCR
5.3.3 Troubleshooting
5.4 Web resources about primer and probe design
 5.4.1 Real-time PCR primer and probe databases
 5.4.2 Primer and probe design tools
 5.4.3 Other useful web sites
References

6 Quantitative analysis of ocular gene expression
Stuart N. Peirson
6.1 Introduction
 6.1.1 Gene expression in the eye
 6.1.2 Problems associated with ocular gene expression
6.2 Relative quantification
 6.2.1 The R₀ method
 6.2.2 Kinetic approaches to qPCR
 6.2.3 Accurate normalization
6.3 Assay considerations
6.4 Conclusions
References

7 Quantitative gene expression by Real-Time PCR: A complete protocol
Thomas D. Schmittgen
7.1 Introduction
7.2 Materials
 7.2.1 Reagents and consumables
 7.2.2 Equipment
7.3 Procedure
 7.3.1 Sample preparation
 7.3.2 Isolation of RNA from cultured cells or blood
 7.3.3 Isolation of RNA from whole tissue
 7.3.4 RNA quantification
 7.3.5 DNase treatment
 7.3.6 cDNA synthesis
 7.3.7 SYBR® green
 7.3.8 Primer design
 7.3.9 Real-time PCR
 7.3.10 Data analysis
 7.3.11 Calculation of fold-change in gene expression
7.4 Troubleshooting
7.5 Critical steps
7.6 Comments
References

8 Real-time PCR using SYBR® Green
Frederique Ponchel
8.1 Introduction
8.2 SYBR® Green chemistry
8.3 Primer design
 8.3.1 Step by step primer design: β-actin for a cDNA quantification assay
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4 Primer optimization</td>
<td>00</td>
</tr>
<tr>
<td>8.4.1 Absolute quantification of gene expression</td>
<td>00</td>
</tr>
<tr>
<td>8.4.2 Relative quantification of gene expression</td>
<td>00</td>
</tr>
<tr>
<td>8.4.3 Relative quantification of different gene modifications</td>
<td>00</td>
</tr>
<tr>
<td>(amplification, deletion, rearrangement, translocation)</td>
<td>00</td>
</tr>
<tr>
<td>8.5 Melting curve analysis</td>
<td>00</td>
</tr>
<tr>
<td>8.6 Quantification of gene modification</td>
<td>00</td>
</tr>
<tr>
<td>8.6.1 DNA quantification</td>
<td>00</td>
</tr>
<tr>
<td>8.6.2 Gene amplification</td>
<td>00</td>
</tr>
<tr>
<td>8.6.3 Gene deletion</td>
<td>00</td>
</tr>
<tr>
<td>8.6.4 Gene rearrangement</td>
<td>00</td>
</tr>
<tr>
<td>8.6.5 Gene copy number</td>
<td>00</td>
</tr>
<tr>
<td>8.7 RNA quantification</td>
<td>00</td>
</tr>
<tr>
<td>8.7.1 RNA extraction</td>
<td>00</td>
</tr>
<tr>
<td>8.7.2 cDNA preparation</td>
<td>00</td>
</tr>
<tr>
<td>8.7.3 Reference gene validation</td>
<td>00</td>
</tr>
<tr>
<td>8.7.4 Splice variants and splicing machinery</td>
<td>00</td>
</tr>
<tr>
<td>8.7.5 Promoter switch</td>
<td>00</td>
</tr>
<tr>
<td>8.8 Allelic discrimination</td>
<td>00</td>
</tr>
<tr>
<td>8.9 Chromatin immunoprecipitation</td>
<td>00</td>
</tr>
<tr>
<td>8.10 Conclusion</td>
<td>00</td>
</tr>
<tr>
<td>References</td>
<td>00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 High-resolution melting analysis for scanning and genotyping</td>
<td>00</td>
</tr>
<tr>
<td>Virginie Dujols, Noriko Kusukawa, Jason T. McKinney, Steve F. Dobrowolsky and Carl T. Wittwer</td>
<td>00</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>00</td>
</tr>
<tr>
<td>9.2 High-resolution instrumentation</td>
<td>00</td>
</tr>
<tr>
<td>9.2.1 The HR-1 instrument</td>
<td>00</td>
</tr>
<tr>
<td>9.2.2 The LightScanner instrument</td>
<td>00</td>
</tr>
<tr>
<td>9.2.3 The LightCycler 480 instrument</td>
<td>00</td>
</tr>
<tr>
<td>9.3 Saturating dyes</td>
<td>00</td>
</tr>
<tr>
<td>9.3.1 LCGreen dyes</td>
<td>00</td>
</tr>
<tr>
<td>9.4 Mutation scanning</td>
<td>00</td>
</tr>
<tr>
<td>9.4.1 PCR protocols for scanning</td>
<td>00</td>
</tr>
<tr>
<td>9.4.2 Principles of scanning by melting</td>
<td>00</td>
</tr>
<tr>
<td>9.4.3 Software tools for heterozygote identification</td>
<td>00</td>
</tr>
<tr>
<td>9.4.4 Scanning for homozygous variants</td>
<td>00</td>
</tr>
<tr>
<td>9.5 Amplicon genotyping</td>
<td>00</td>
</tr>
<tr>
<td>9.6 Unlabeled probe genotyping</td>
<td>00</td>
</tr>
<tr>
<td>9.6.1 PCR protocols for unlabeled probe genotyping</td>
<td>00</td>
</tr>
<tr>
<td>9.6.2 Instrumentation for unlabeled probe genotyping</td>
<td>00</td>
</tr>
<tr>
<td>9.6.3 Simultaneous genotyping and scanning</td>
<td>00</td>
</tr>
<tr>
<td>9.7 Simplification of genotyping and mutation scanning</td>
<td>00</td>
</tr>
<tr>
<td>References</td>
<td>00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Quantitative analyses of DNA methylation</td>
<td>00</td>
</tr>
<tr>
<td>Lin Zhou and James (Jianming) Tang</td>
<td>00</td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>00</td>
</tr>
<tr>
<td>10.2 MDR1 (ABCB1, Gene ID 5243) as a primary target locus</td>
<td>00</td>
</tr>
</tbody>
</table>
11 Mitochondrial DNA analysis

Steve E. Durham and Patrick F. Chinnery

11.1 Introduction

11.2 Mitochondrial genetics
 11.2.1 mtDNA mutations
 11.2.2 mtDNA copy number and heteroplasmy
 11.2.3 The threshold effect
 11.2.4 Mutation rate of mtDNA
 11.2.5 Mitochondrial DNA, aging and disease

11.3 Mitochondrial DNA analysis by real-time PCR
 11.3.1 Detection method
 11.3.2 Oligonucleotide fluorescent probes
 11.3.3 DNA binding dyes
 11.3.4 Considerations when designing a mtDNA real-time assay

11.4 Discussion

References

Protocol 10.1

12 Real-time immuno-PCR

Kristina Lind and Mikael Kubista

12.1 Introduction
 12.1.1 Immunoassays
 12.1.2 Immuno-PCR

12.2 Assemblages for real-time immuno-PCR
 12.2.1 Attaching capture antibody
 12.2.2 Labeling detection antibody with DNA

12.3 Real-time immuno-PCR details
 12.3.1 Reaction containers and instruments
 12.3.2 DNA-label
 12.3.3 Blocking agents
 12.3.4 Controls
 12.3.5 Optimizing concentrations

References

Protocol 12.1

13 Clinical microbiology

Burcu Cakilci and Mehmet Gunduz

13.1 Introduction
 13.1.1 Importance of detection and quantification in microbiology
 13.1.2 From traditional methods to real-time PCR in microbiology

13.2 Real-time PCR studies in microbiology
 13.2.1 Basics for microbial quantitation
 13.2.2 Bacteria
 13.2.3 Fungi and parasites
14 Clinical virology
David M. Whiley and Theo P. Sloots
14.1 Introduction
14.2 Qualitative real-time PCR for viral disease
14.2.1 Sequence variation and assay performance
14.3 Virus typing using sequence-specific probes
14.3.1 Hybridization probes
14.3.2 Additional comments
14.4 Quantification of viral load
14.4.1 The use of an internal control in clinical molecular virology
14.4.2 Impact of target sequence variation on qPCR
14.4.3 Additional comments
14.5 Conclusions
References

15 Solid organ transplant monitoring
Omaima M. Sabek
15.1 Introduction
15.2 Real-time quantitative PCR
15.3 RNA normalization
15.4 Immunologic monitoring in solid organ transplantation
15.5 Pharmacogenetics in solid organ transplantation
15.6 Cytokine polymorphism analysis
15.6.1 Recipient and donor polymorphisms
15.6.2 Ethnicity and cytokine gene polymorphism
15.7 Viral infection in transplant patients
References

16 Real-time PCR applications in hematology
Anne M. Sproul
16.1 Specimens
16.2 Specimen quality
16.3 Template preparation
16.4 DNA isolation
16.5 PCR inhibition
16.6 RNA isolation
16.7 cDNA synthesis
16.8 Relative versus absolute quantitation
16.9 Control genes for MRD in leukemia
16.10 Controls for real-time PCR
16.11 Assay design
16.12 Laboratory precautions
16.13 PCR reaction set-up 00
16.14 Interpretation and quantitation 00
16.15 Sensitivity 00
16.16 Targets for detecting MRD 00
 16.16.1 Fusion transcripts 00
 16.16.2 Rearrangements of immunoglobulin/TCR genes in lymphoid neoplasia 00
References 00
Protocol 1 00
Protocol 2 00

17 Real-time PCR for prenatal diagnosis of monogenic diseases caused by single nucleotide changes
The example of the hemoglobinopathies
Joanne Traeger-Synodinos, Christina Vrettou and Emmanuel Kanavakis
17.1 Introduction to prenatal diagnosis (PND) in clinical genetics 00
17.2 Classic mutation detection methods for prenatal diagnosis of monogenic diseases and best practice guidelines 00
 17.2.1 Classic mutation detection methods 00
 17.2.2 Best practice guidelines for prenatal diagnosis 00
17.3 Sources of fetal samples for prenatal diagnosis 00
17.4 Real-time PCR protocols for PND and PGD applied to the hemoglobinopathies background and design of protocols 00
 17.4.1 Real-time PCR and allele discrimination using the LightCyclerTM (system 1.0 or 1.5) 00
 17.4.2 Molecular basis of β-hemoglobinopathies 00
 17.4.3 Principles behind design of LightCyclerTM probe sets and assays in the β-globin gene (appropriate for Systems 1.0 and 1.5) 00
 17.4.4 Additional considerations in design of single-cell genotyping for PGD using real-time PCR 00
 17.4.5 Potential advantages of real-time PCR protocols for PND and PGD 00
References 00
Protocols for preparing fetal DNA samples 00