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Gene Expression Regulation

Chromatin modifications

Transcriptional regulation (TF-mediated)
Post-transcriptional (hcRNA-mediated)
Translational (RNA decay; ribosome occupancy)

eQTL: Expression quantitative trait loci (variants associated with expression levels)

Tvpesof eQTLs:

dsQTL - DNase | sensitivity quantitative trait loci

enhSNP ~enhancer SNP

eQTN - expression quantitative trait nucleotide (causative eQTL)

esQTL - expression-specific QTLs (greater correlation with mRNA than protein abundance)
hQTL - histone-modification quantitative trait loci

haQTL - histone acetylation level quantitative trait loci

meQTL - methylation level quantitative trait loci

miR-eQTL - miRNA expression level quantitative trait loci

rQTL “ribosome occupancy quantitative trait loci

rbSNP - RNA-binding protein binding site SNP

pQTL - protein abundance quantitative trait loci

psQTL - protein-specific QTLs (greater correlation with protein than mRNA abundance)
RdQTL - RNA decay quantitative trait loci

sQTL - Splicing quantitative trait loci

QTLeri - Epigenetic quantitative trait loci (correlations with DMR)



Gene Expression Regulation

— Chromatin looping

— Transcription factor binding site alteration

— DNase | hypersensitivity (DHS) region modification
— Histone modifications

— DNA methylation

— NncRNA sequence or binding site alteration

— RNA splicing

Ultimately >>> eQTL effect
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Gene Expression Regulation
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Fig. 2. Percolation of genetic effects through the gene regulatory cas-
cade. (A) Correlation of effect sizes across different measurements from
eQTLs identified in the GEUVADIS YRI sample (6). Txn rate, transcription rate.
(B) QTL sharing across the regulatory cascade. Each panel shows the estimated
fraction of QTLs identified at one stage that are preserved at the next stage of
regulation. The four bars in each panel correspond to the P-value threshold for
ascertaining QTLs in each assay, using the linear regression t statistics. Bars
represent 80% confidence intervals on m, the fraction of true positives (16). The
enhancer-TSS panel considers the effect of H3K27ac QTLs on the nearest TSS.
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Most regulatory effects are shared

from transcription to protein expression levels

Translation  Steady-state protein levels
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mRNA decay QTLs
<10% (Pai et al., 2012)

protein-specific QTLs
< 10% (Battle et al., 2015)

(C) The fraction of expression QTLs that also affect chromatin-level phenotypes,
as estimated by two models, and for matched control SNPs. About 35% of gene
eQTLs do not appear to affect chromatin traits. QTLs for H3K4mel and
H3K4me3 are from (8). (D) Functional context of eQTL SNPs that are not
associated with chromatin changes (“unexplained”) versus those eQTLs
that are also chromatin QTLs. 5’ untranslated regions were excluded from
the “gene exons” annotation. Five annotations with bootstrap P > 0.05 are
not shown. (E) Summary of the effects of regulatory QTLs and of their sharing
through the regulatory cascade.
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Gene Expression Regulation

rs6269 (A>(-) impacts chromatin and splicing at the COMT locus
UCSC Genes

COMT — ; 33 ——t o+ . ——— —

U o 1

Layered H3K27ac from ENCODE

CTCF T
DNase |

Fig. 3. Properties of sQTLs. Most sQTLs act independently from eQTLs:
Positional distributions of (A) eQTLs and (B) sQTLs at 5% FDR are consistent
with our mechanistic understanding of gene transcription and splicing. (C) The
distance between the best eQTL and best sQTL for genes with both types of
QTL is typically large, suggesting distinct causal variants. (D) A hierarchical
model reveals distinct genomic features that are most relevant for eQTLs
and sQTLs, respectively. (E) QTLs for CTCF binding, and H3K27ac levels are
more likely to be sQTLs thag matched SNPs within CTCF and H3K27ac ChlP-
seq peaks, respectively Example of an sOTL (rs6269) that is also a OTL
for CTCF, DNasel sensitivity, and DNA methylation. The allele that is as-
sociated with increased CTCF occupancy is also associated with increased
use of an alternative upstream splice site for an exon of the catechol-O-
methyltransferase gene, COMT, which is consistent with the model that Polll
pausing at CTCF binding sites can promote upstream exon inclusion (21).
COMT, which regulates dopamine, has possible roles in neuropsychiatric
conditions (25). In Europeans, the sQTL is in nearly complete linkage dis-
equilibrium with a missense variant, rs4680, which has been the main focus
of attention to date.
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Gene Expression Regulation
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Gene Expression Regulation
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Figure 1. An llustrative Example of the Data Types Available through the Encyclopedia of DNA Elements - —
(ENCODE) Project Portals. These include measurements of (4) Open chromatin using DNase-seq and FAIRE-seq, (B) H Computational prediction e
ChlP-seq for histone maodifications, (C) DNA methylation, (D) 3D interactions, (E) ChiP-seq for transcription factors and other RT-PCR
chromatin-associated proteins, (F) transcriptional output including RNA-seq, CAGE, and RNA-PET, (G) BNA-protein % .
interactions, and (H) gene body predictions through computational and manual annotation as part of GENCODE. Datain GENCODE
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Gene Expression Regulation

—

Figure 1 Model of enhancer function. Transcriptional enhancer elements are noncoding stretches of DNA that regulate gene expression levels,
most often in cis. Active enhancer elements are located in open chromatin sensitive to DNase | digestion and flanked by histones marked with
H3K4me1 and H3K27ac. Enhancers are often bound by a number of transcription factors (TF), such as p300 (blue). Mediator and cohesin are part
of a complex (orange, green and purple) that mediates physical contacts between enhancers and their target promoters.

Ritchie and Flicek Genome Medicine 2014, 687

http//genomemedicine com/content/6/10/87 Genome Medicine

Computational approaches to interpreting
* genomic sequence variation

Liverpool Hope
Unive‘:'sity e Graham RS Ritchie'? and Paul Flicek'”*



http://www.genomemedicine.com/content/6/10/85
http://www.genomemedicine.com/content/6/10/85

Gene Expression Regulation

B. Hrdlickova et al. / Biochimica et Biophysica Acta 1842 (2014) 1910-1922 1911
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Fig. 1. Abundance of regulatory ncRNA spedies versus protein coding genes in the human genome. The numbers are based on Gencode V17 (http://www.gencodegenes.org/releases/17.html).
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Gene Expression Regulation: DHS

We identified 8,902 locations at which the DNase-seq
read depth correlated significantly with genotype at a nearby single
nucleotide polymorphism or insertion/deletion (false discovery
rate = 10%). We call such variants ‘DNase I sensitivity quantitative
trait loci’ (dsQTLs). We found that dsQTLs are strongly enriched
within inferred transcription factor binding sites and are frequently
associated with allele-specific changes in transcription factor bind-
ing. A substantial fraction (16%) of dsQTLs are also associated with
variation in the expression levels of nearby genes (that is, these loci
are also classified as eQTLs). Conversely, we estimate that as many
as 55% of eQTL single nucleotide polymorphisms are also dsQTLs.
Our observations indicate that dsQTLs are highly abundant in the
human genome and are likely to be important contributors to
phenotypic variation.

DNase I sensitivity QTLs are a major determinant of
human expression variation

¢ Jacob F. Degner'?*, Athma A. Pai'*, Roger Pique-Regi'*, Jean-Baptiste Veyrieras"?, Daniel J. Gaffney', Joseph K. Pickrell’,
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Figure 1 | Genome-wide identification of dsQTLs and a typical example. dsQTL (rs4953223). The black line indicates the position of the associated SNP.
a, Q-Q plots for all tests of association between DNase I cut rates in 100-bp d, Box plot showing that rs4953223 is strongly associated with local chromatin
windows, and variants within 2-kb (green) and 40-kb (black) regions centred  accessibility (P =3 X 107 "%). e, The T allele, which is associated with low

on the target DHS windows. b, Allele-specific analysis of dsQTLs in DNase [ sensitivity, disrupts the binding motif of a previously identified NF-
heterozygotes. Plotted are the predicted (x axis) and observed (y axis) fractions  kB-binding site at this location". f; NF-kB ChIP-seq data from ten individuals’
ofreads carrying the major allele based on the genotype means. ¢, Exampleofa  indicates a strong effect of this SNP on NF-xB binding.

DNase I sensitivity QTLs are a major determinant of
human expression variation
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a Aggregate DNase-seq profile at dsQTLs
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human expression variation

¢ Jacob F. Degner'?*, Athma A. Pai'*, Roger Pique-Regi'*, Jean-Baptiste Veyrieras"?, Daniel J. Gaff.neylA, Joseph K. Pickrell’,
Sherryl De Leon®, Katelyn Michelini*, Noah Lewellen®, Gregory E. Crawford™®, Matthew Stephens"’, Yoav Gilad'
& Jonathan K. Pritchard"*

Liverpool Hope
University .



https://www.ncbi.nlm.nih.gov/pubmed/22307276

a Joint dsQTL-eQTL example

b  Q-Q plot for eQTL associations
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Figure 3 | Relationship between dsQTLs and eQTLs. a, Example of a dsQTL
SNP that is also an eQTL for the gene SLFN5. The SNP disrupts an interferon-
sensitive response element, thereby changing local chromatin accessibility
within the first intron of SLFN5. Expression of SLFN5 has been shown to be
inducible by interferon o in melanoma cell lines. DNase-seq (left) and RNA-seq
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(right) measurements from DNase-seq and RNA-seq are plotted, stratified by
genotype at the putative causal SNP. b, Q-Q plot of the t-statistic forassociation
with gene expression changes (eQTL) of dsQTL SNPs. The sign of the eQTL
t-statistic is with respect to the genotype that increases DNase sensitivity.
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a eQTL probability and distance
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Figure 4 | Relationship between dsQTLs and eQTLs. a, Most joint dsQTL-
eQTLslie closeto the gene TSS. b, Effect of various factors on the log odds thata
given dsQTL is also an eQTL, while controlling for the strong distance
relationship observed in a. In annotations (1) and (2) we do not consider the
direction of transcription. In annotations (6-8) ChIP-seq is measured on the
dsQTL window. In annotations (4) and (6), ‘meQTL’ refers to a dsQTL that is
also associated with methylation levels of a nearby CpG site’” and ‘Pol II' refers
to the presence of an RNA polymerase II ChIP-seq peak overlapping the DHS
assodiated with the dsQTL”. One of the most significant annotations in
delineating the regulatory regions is defined by the presence of the CTCF
insulator element, which decreases 2.4-fold the probability that a dsQTL is an
eQTL. Error bars represent 95% confidence intervals.
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Gene Expression Regulation
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Fig. 4. Mechanism and functional consequences of chro-
matin variation. (A) Correlation coefficients of TF motif dis-
ruption scores and H3K27ac signal across individuals. Motifs
are sorted based on the number of assodiated peaks; peaks are
sorted based on their associated motifs. (B) Log2 fold-enrichment
of motifsin promoter (red) versus enhancer (orange) states.
Only significant enrichments (Fisher's exact test P < 0.05)
are shown. (C) eQTLs and GWAS hits in variable regions. Stars
indicate P < 0.05.
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Figure 1. Higher-Order Chromatin Folding and Topologically Associating Domain (TAD) Structure at the Eph
receptor A4 (Ephad) Locus. Hi-C interactions are shown in a heat map in which each dot refiects two interaction pairs.
The resulting interaction profile shows the formation of triangles (schematically enhanced in color) that represent individual
TADs. There is a high degree of interaction within each TAD but little contact between TADs. Abrupt changes in the
directionality of contacts demarcate boundary regions (blue hexagon). Of note is the very large TAD containing one (Epha4)
gene, whereas the flanking TADs are much smaller (right) or contain many genes (left). Below, the binding profile of the
CCCTC-binding factor (CTCF) transcription factor is shown. Note the scarcity of binding sites in the Epha4 TAD and the
enrichment at the boundaries. CTCF is also associated with gene promoters. The 4C-seq profiles of the viewpoints /Indian
hedgehog (lhh), Epha4, and Paired box3 (Pax3) are depicted below. Note that the interaction profiles are restricted to the
respective TADs. Data from (23,301
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3D Genome

The eukaryotic nucleus is a complex 3D environment in which genome
function depends not only on the linear arrangement of regulatory
sequence elements, but also on their spatial organization for effective
control of gene expression.

Analysis of the role of chromatin 3D organization in gene expression
IS progressing rapidly, largely due to the development of chromosome
conformation capture methods such as Hi-C.

Sequences within these Topologically Associated Domains (TADs)
interact more frequently with sites inside than outside the domain.
TADs with a median size of 880 kb have been found in mammals.

Breaking TADs: How
Alterations of Chromatin
Domains Result in Disease
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Figure 2. An example of a Hi-C contact map. Hi-C contact map of a segment of

mouse chromosome 11, generated using Sushi [90] from Dixon et al. [85] data. A TP
TAD and a long-range interaction between two lod are annotated. A colour version o e
of this figure is available online at BIB online: https://academic.oup.com/bib.
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Figure 1. Models of chromatin organization. A diagram of different models of chromatin organization in the nuclear space. Interphase chromatin that interacts with

the nudear lamina (grey), nucleolus (green), nudear pores (red), transcription factories (¢ ge) and splicing speckles (black) are depicted here. Generally, lamin- and Briefings in Bloinformatics, 17(6), 2016, %60-995
nucleolar-assodated domains are transcriptionally repressed and have 2 more cond d chromatin, wh chromatin that loops to the nuclear pore, transaiption R

factories and splidng speckles are transcriptionally active and therefore have a more open chromatin structure (here, depicted as 10 nm chromatin fibre). Enhancers Advance Access Publication ute: 19 Navemsber 2013
can activate gene expression over a distance and contain binding sites for TFs that recruit co-factors (activators or rep s). Api hancer boping mechan- ————

ism mediated by cohesin (brown), CTCF (purple) and the mediator complex {red) that brings the enhancer into close proximity to its target promoter are presented in
the enlarged box. The enhancer and promoter are marked with white baxes, and the transcription start site of the transcribed target gene is annotated with an arrow.
TFs (green) and co-factors (yellow) bind the enhancer and are brought close to the basal transaiption machinery at the promoter. RNAPolll (orange) transcribes pre- . . .
mRN(ffmm the target gengeand e)RNA from the enhancer. Some o‘:’athse models may co-exist fopr different PE I;yhawevel: there are also other mg:els that we c:uld In the 100p promoter—enhancer interactions and
* notshow. A colour version of this figure is available online at BIB online: https://academic.oup.com/bib. bioinformatics
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ciated SNPs in the intron of CLEC16A. Hi-C data from human foetal lung (IMR-90) cells (from the Ren lab, [85]) show interactions between

CLEC16A intron 19 and the DEXI locus. The enhancer marks in IMR-20 cells for H3K4me1 and H3K27ac are shown in green and blue, respectively, and the filter thresh-

o

Figure 3. Long-range interactions functionally connect disease-associated SNPs with disease candidate genes. (A) Physical proximity between DEXI gene locus and
i me

old for the Hi-C data was set to 5. SNPs in the region are in black, and the eQTL SNP rs12708716 is marked in red. The arc (pink) for interacting regions (grey) is

highlighted with an arrow. (B) Long-range interactions links obesity-associated variants in FTO with the IRX3 locus. Hi-C data in human foetal lung (IMR-90) cells show
associated SNP rs9930506 is marked in red. Arcs (pink) for interacting regions (grey) are highlighted with arrows. These public data sets are available and visualized

with the WashU EpiGenome Browser (http://epigenomegateway.wustl.edu/browser/). dbSNP release 137 is shown in dark green, and the The National Human Genome
Research Institute (NHGRI) Catalogues of GWAS are visualized in UCSC browser (http://genome-euro.ucsc.edu) [166]. A colour version of this figure is available online at

tissues from the NIH Roadmap Epigenomics Mapping Consortium. The filter threshold for the Hi-C data was set to 10. SNPs in the region are in black, and the BMI-
RIR anline htmea//arademic nim cam/hih

interactions between the first intron of FTO with IRX3. The tracks for H3K4mel and H3K27ac are shown in green and blue from IMR-90 cells and different human brain
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Figure 2. Chromosomal 3D structure and promoter-promoter interactions of Chr1 in IMR30 cell line based on a set of Hi-C data. (A} Chromosomal 3D
structure. The dashed circle with two orange crescents that stand for nuclear pore complex is the nucleus membrane. The thick grey lines are chro-
matin and the purple circles stand for proteins that link chromatin together. (B) Promoter-promoter interactions of Chr1. (C) Promoter-promoter inter-

actions of Chr1:1-20000000, zooming into the interactions. The red lines stand for long-range interacti (di b interaction DATABASE o ot
pair > 500kb), while the blue lines for short-range (distance < 50kb) and the green lines for middle-range (di panning 50-500kb). The black Original aricle
texts are the gene names of corresponding loci.
Original article
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Home Method Search Download Help Update

Chromatin Chromatin Space Interaction

Welcome to CCSI database

Here, CCSI (Chromatin Chromatin Space Interaction) database presents 3,017,962 chromatin interaction pairs with annotation of genes,
enhancers and SNPs in many cell lines of human, mouse and yeast. These data were obtained by means of 3C, 4C, 5C, ChlA-PET and Hi-C
technology in a cell's natural state, nearly all of which detected the three-dimensional architecture of chromosome by coupling ligation in close
spatial proximity followed by high-throughput sequencing. So transcriptional regulatory mechanism in disease pathogenesis associated with

spatial interactions among genes, enhancers and SNPs could be explored on the base of it.
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3““3 Chromosome Conformation Capture Database

Home Data Browser Genome Browser Search 3C Technology Help Contact

Welcome to Chromosome Conformation Capture Database(3CDB)

Chromosome conformation capture (3C) is a biochemical technology to analyze contact frequencies between
selected genomic sites in a cell population. We have developed a database of manually curated 3C data (3CDB). By
searching Pubmed with carefully designed keyword combinations, we have retrieved about 5000 papers, and from
which 3319 interactions in 17 species were manually extracted. Moreover, we developed a systematic evaluation
scheme for data reliability and classified the interactions into four categories. Our evaluation scheme provides a
solution to a long-standing problem about the incomparability of 3C data between laboratories. We believe that
3CDB will provide fundamental information for experimental design and bridges the gap between molecular and
systems biologists who must now contend with noisy high-throughput data.
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Home Data Browser Genome Browser Search 3C Technology Help Contact

Search Result
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3““3 Chromosome Conformation Capture Database

Home Data Browser Genome Browser Search 3C Technology Help Contact

Welcome to Chromosome Conformation Capture Database(3CDB)

Chromosome conformation capture (3C) is a biochemical technology to analyze contact frequencies between
selected genomic sites in a cell population. We have developed a database of manually curated 3C data (3CDB). By
searching Pubmed with carefully designed keyword combinations, we have retrieved about 5000 papers, and from
which 3319 interactions in 17 species were manually extracted. Moreover, we developed a systematic evaluation
scheme for data reliability and classified the interactions into four categories. Our evaluation scheme provides a
solution to a long-standing problem about the incomparability of 3C data between laboratories. We believe that
3CDB will provide fundamental information for experimental design and bridges the gap between molecular and
systems biologists who must now contend with noisy high-throughput data.
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The 2.0 version of rSNPBase

rVarBase:an updated database for regulatory features of human variants

Chromatin states, regulatory elements and target genes

Quick Search:

Input of guick search could be:

= dbSNP/dDVar ID: rs12345 /nsvia79

= 3 single nucleotide as 0-based coordinates: chr1:12345
= chromosomal regions: chrl:12345-34567

About rVarbase

rVarBase annotates variant's regulatory feature in three fields: chromatin state ofthe region surrounding variant, requlatory elements overlapped '

with variant, and variants potential target genes. It also provides optioned extended annatation for variants, including: LD-proxies of known SNP,
SMPICNY that is overlapped with or located in queried variant, traits (disease and expression quantitative trait) associated with variant. r'YarBase is
an updated version of the database r8NPBase, it is consistent with the old version in utilizing experimentally supported regulatory elements from
EMCODE and other data resources to make relevant annotation {(such as involved regulatory manner and potential target gene) rVarBase is different
from the old version in several new features:

.
= New variant types what's new

= New dimension of annotation

= New regulatory manner

= More detailed annotation on variant overlapped TFBS i
« More extended data i = New regulatory manner

= New search manner ! = More detailed annotation on variant overlapped TFBS

= More extended data

= New variant types
= New dimension of annotation

= New search manner

Quick links
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Citation: Guo, L., Du, ¥, Qu, 5., & Wang, J. (2015). rvarBase: an updated database for regulatory features of human variants. Nucleic acids research,
gkv1107 pubmed
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3D Genome: rVarBase

& The 2.0 version of rSNPBase
rVarBase:an updated database for regulatory features of human variants

fgd Chromatin states, regulatory elements and target genes

Variant report

Variant rsd4813720
Chromosome Location chr20:4797409-4797410
allele AG

Qutlinks ZEnsembl EUCSC

Chromatin state Related regulatory elements Target genes Other information
TF binding CpGislands Chromatin interactive LncRNA Mature miRNA miRMA target
region {count:0} {count:0) region (count:1) region (count:0) region (count: 0) sites (count:0)

{count:1 , 50 per page) page: n

No. Distal block Cell Line Cell type Cell Stage

Chr20:4794840. 4796651- . _
L chr20-:4796825._4799356 2 Lo bl

rVarBase: an updated database for regulatory
features of human variants

Liverpool Hope Liyuan Guo; Yang Du; Susu Qu; Jing Wang &5
University

*



http://rv.psych.ac.cn/
https://academic.oup.com/nar/article/44/D1/D888/2502616

3D Genome: CTCFBSDB

CTCFBSDB 2.0: A database for CTCF binding sites and genome organization

Home Search Experimentally Identified CTCFBS Browse Topological Domain Predicted CTCEBS CTCFEBS Prediction Tool

Table of Contents

1. Background

2. Sources of binding sites

3. Database access and content

4. In silico CTCFBS prediction tool
5. Recent updates

6. Download

7. References
§. Contact us

1. Background

CCCTC-binding factor (CTCF) is a versatile transcription regulator that 1s evolutionarily conserved from fruit fly to human. CTCF binds to different DNA sequences through combinatorial use of 11-zinc fingers, and shows distinct
functions (transcription activation/repression and chromatin msulation) depending on the biological context 1.2 Insulators, with the functions of enhancer-blocking and domain-bordering, are critical regulatory elements for gene
expression control 3. They represent a class of diverzed DNA sequences capable of shielding genes against inappropriate cis-regulatory signals from their genomic neighborhood. Recent studies also linked insulators to epigenetics,
such as imprinting 36 and X-chromosome inactivation " In eukaryotic genomes, maintenance of distinct chromatin domains is critical for transcription control, and CTCF has been identified as playing a crucial role in the global
organization of chromatic architecture 2. Evidence for this CTCF function has been strengthened by Hi-C experiments that have shown that interacting genomic regions commonly contain CTCF binding sites and that the boundaries of
genomic topological domains are enriched for CTCF binding sites 85:10_ To analyze this important type of DNA regulatory element. we created a CTCF binding site database (CTCFBSDB). a comprehensive collection of experimentally
determined and computationally predicted CTCF binding sites (CTCFBS) from the literature. The database is designed to facilitate the studies on iisulators and their roles in demarcating functional genomic domains.
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4D Genome

G.éll:'l'ome

About Contribute Downloads Statistics

Welcome to 4DGenome, a general Input Genomic Regions
repository for chromatin interaction e.g.: chri:1000-20000 ...
data.

Records in 4DGenome are compiled through

comprehensive literature curation of experimentally-

derived and computationally-predicted interactions. The o F“ :z'oﬁ;d;:s:
current release contains 4,433,071 experimentally-derived

and 3,605,176 computationally-predicted interactions in 5 Select Organism -

organisms. Experimental data cover both high throughput

datasets and individiual focused studies. All Cells v B All Methods v

. . ) . ) © Any overlap (Loose) ® Center overiap (Stringent) ?
All interaction data are freely available in a standardized

file format. Records can be queried by genomic regions,
gene names, organism, and detection technology.

Submit Reset
|

*
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ribute  Downloads

Welcome to 4DGenome, a general Input Genomic Regions
repository for chromatin Interaction <o et o0 s
data,

®

Download Tables InteractorA  Start_hg19 End_hgl9  InteractorB  Start_hgl9 End_hg19 Agene Bgene CellfTissue  Detection  Confidence  Confidence  Contact PMID
1 chr 7] - < o [T S = S = ~| Method[~| Scorel[+| Score2|~| Frequen « =
422 | chrs 10315875 10329941 chr20 38750056 38752056 NA MAFS,ENSGD0000204103 Islet ac 1.00E-10 1.006-10 NA 24413736
Full Dataset [884M] 43 | chre 157503620 157517838 chr1s 50243703 60245703 NA cDC24A Islet ac 1.00E-10 1.006-10 NA 24413736
424 chré 161565011 1615823865 chr1s 50243703 60245703  AGPAT4 ENSGDOODO026652 CDC24A Islet ac 1.00E-10 1.006-10 NA 24413736
. 45 | chrs 72459543 72460254 chr1s 50243703 60245703 NA cDC24A Islet ac 1.00E-10 1.006-10 NA 24413736
By Organism 426 | chrs 86476726 86488417 chr15 50243703 60245703 NA CoC24A 1slet ac 1.00E-10 1.006-10 NA 24413736
427 | chrs 87749120 87765233 chr1s 50243703 60245703 NA CDC24A 1slet ac 1.00E-10 1.006-10 NA 24413736
Drosophila melanogaster (dm3) [5.4M] 109004 |  chré 113338404 113342157 chrg 100019521 100023609 NA NA MCF7 chiA-PET 9.94E-03 2.94E-03 2 19820323
109063 |  chrs 116573341 116574450 chrg 98346549 98350824 NA NA MCF7 ChiA-PET 1.296-02 129602 2 19890323
_ 109450 chré 129655352 129659267 chr7 11739501 11741816 NA NA MCF7 chiA-PET 5.86E-03 5.866-03 2 19890323
Homo sapiens (hg19) [375M] 109483 | chrs 13188204 13190556 chr7 119897914 113899333 NA NA MCF7 chia-pET 1.69E-03 169603 2 19890323
109555 | chrs 133675788 133677357 chrk 113301744 113305058 NA NA MCF7 chia-pET 2.256-03 225608 2 19830323
Mus musculus (mm38) [505M] 110072 |  chrs 140366524 140369650 chrg §7119559 87124371 NA NA MCF7 ChiA-PET 7.97E-03 7.97E-03 2 19890323
110217 | ches 144461139 144464271 chr7 25996058 25997037 NA NA MCF7 chia-PET 9.84E-03 9.84E-03 2 19820323
Plasmodium falciparum (307) [37M] 110218 | chré 144461139 144464271 chr7 71651988 71653553 NA NA MCF7 chia-PET 1.59E-03 169603 2 19820323
110414 | chrs 149441521 149447514 chrg 95804116 95805941 NA NA MCF7 chia-PET 1.466-02 146602 2 19820323
o 111610 chré 170636828 170642065 chrg 116356261 116362118 NA RG33,ENSGO0000138835 MCF7 ChiA-PET 1.486-02 1.486-02 2 19890323
SERHIEOENYEES BEIBEER (SRCHR) (i) 113870 |  chré 33971691 33975907 chrX 81952949 81955903 NA NA MCF7 chiA-PET 2.856-01 2.856-01 2 19890323
114100 | chrs 35281954 35285440 chrx 125368031 125372077 DEF6,ENSGODD00023892 NA MCF7 chia-pET 5.206-03 5.206-03 2 19890323
114653 | chro 40571645 40576753 chrg 110819605 110824033 NA NA MCF7 chia-pET 1.426-02 1.426-02 2 19830323
115297 | chrs 44075370 24079223 chrg 113967345 113970934 NA NA MCF7 chia-PET 9.94£-03 9.946-03 2 19890323
115892 | chrs 85292802 65208442 chrx 24000947 24006427 NA NA MCF7 chia-PET 1.26602 126602 2 19820323
115931 | chrs 7912721 67914213 chr7 2577564 2579485 NA NA MCF7 chiA-PET 5.756-03 575603 2 19820323
115999 | chrs 0744408 59747905 chrg 93602364 93609113 NA NA MCF7 chia-PET 9.94E-03 9.94£-03 2 19820323
116078 |  chré 72333637 72336657 chrg 12647790 12650485 NA NA MCF7 ChiA-PET 5.08E-04 6.086-04 2 19890323
116106 |  chrs 73768705 73775835 chrx 115325824 115333437 NA NA MCF7 chia-pET 2.246-02 224802 2 19890323
16107 | chr6 73768705 73775835 chrx 30100645 30102858 NA NA MCF7 chia-pET 3.34£-03 2.94E-03 2 19890323
116358 | chrs 82780446 82787083 chrg 5436074 5439569 NA PLGRKT ENSGOO0D0107020 MCF7 chia-pET 8.84E-03 8.84E-03 2 19830323
116631 | chrs 91110675 91115107 chr7 71592320 71593324 NA NA MCF7 chia-PET 6.86E-03 5.866-03 2 19890323
116652 |  chrs 92449274 92451582 chrg 143446104 143450545 NA NA MCF7 chia-PET 9.94E-03 9.946-03 2 19890323

Nature. 2009 Nov 5,462(7269):.58-64. doi: 10.1038/nature08497.

An oestrogen-receptor-alpha-bound human chromatin interactome.

PN, Vega VB, Luo ¥, Tan PY, Choy PY, Wansa KD, Zhao B, Lim KS, Leow SC, Yow JS, Joseph R, Li H, Desai KV, Thomsen JS, Lee YK Karuturi RK, Herve
T, Bourgue G, Stunnenberg HG, Ruan X, Cacheux-Rataboul V, Sung WK, Liu ET, Wei CL, Cheung E, Ruan Y.

® Author information

Abstract

Genomes are organized into high-level three-dimensional structures, and DNA elements separated by long genomic distances can in
principle interact functionally. Many transcription factors bind to regulatory DNA elements distant from gene promoaters. Although distal
binding sites have been shown to regulate transcription by long-range chromatin interactions at a few loci, chromatin interactions and
their impact on transcription regulation have not been investigated in a genome-wide manner. Here we describe the development of a
new strategy. chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) for the de novo detection of global chromatin
interactions, with which we have comprehensively mapped the chromatin interaction network bound by oestrogen receptor alpha (ER-
alpha) in the human genome. We found that most high-confidence remote ER-alpha-binding sites are anchored at gene promoters
* through long-range chromatin interactions. suggesting that ER-alpha functions by extensive chromatin looping to bring genes together
for coordinated transcriptional regulation. We propose that chromatin interactions constitute a primary mechanism for regulating
transcription in mammalian genomes.
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Key Points

- Genetic variation affects chromatin states and gene
expression regulation much more than protein structure and
function

- DNAse | hypersensitivity regions are enriched for GWAS hits

- There are many ways an eQTL correlates with gene
expression levels, including effects on chromatin states,
transcription factor / miRNA binding site alteration, RNA
splicing and DNA methylation.

- The effects are generally cell type-specific

- Most of these correlations are already catalogued in open
access databases.
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