Interpretation of GWAS Findings in Transplant Outcome Studies

Mehmet Tevfik Dorak, MD PhD

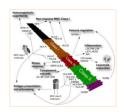
School of Health Sciences, Liverpool Hope University, Liverpool, U.K.

Session I - Chairmen: Elissaveta Naumova, Amal Bishara

09.10-09.40	Interpretation of GWAS findings in transplant outcome studies Mehmet Tevfik DORAK, Liverpool, United Kingdom
09.40-9.55	Role of H&I laboratory in Cord blood transplantation – standards, accreditation and beyond Elissaveta Naumova, Sofia, Bulgaria
9.55-10.10	The role of non-HLA genes in HSCT outcome Katerina Tarassi, Athens, Greece
10.10-10.25	HLA and KIR gene analysis as a predictive tool for the HSCT outcome Svetlana Vojvodić, Novi Sad, Serbia
10.25-10.40	Unrelated Stem Cell Transplantation – novel cell therapy in the treatment of heme malignancies in Clinical Institute "Fundeni" Daniel Coriu, Bucharest, Romania
10.40-11.10	Coffee break

OUTLINE

What is GWAS?


Genetic prediction of transplant outcomes

Unique features of the HLA region

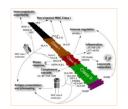
Interpretation of GWAS findings

Imputation (SNPs and HLA types)

Existing GWAS results: What to do with them?

What and What Isn't GWAS?

Supposedly genome-wide, but, due to constraints, not 100%


Generally contains common polymorphisms

Most results (~95% in autoimmune disorders) are non-causal

Results need to be followed up to identify causal variants

Most causal variants correlate with expression levels of their target genes (not necessarily the nearest gene)

HLA region is the most difficult region to work with and requires special attention

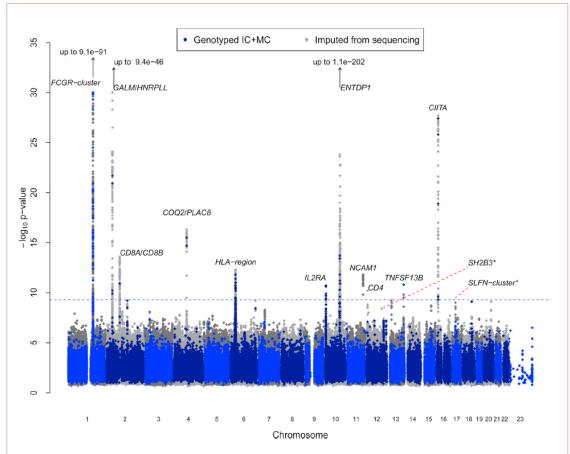


Figure 3. Manhattan Plot of Best p Values

For each SNP, the best p value observed among all assessed traits is plotted on a -log10 scale (y axis), according to its genomic coordinates (x axis). SNPs are colored in blue if the corresponding best p value was directly genotyped with ImmunoChip (IC) or Cardio-MetaboChip (MC) and in gray if imputed from genomic sequencing of Sardhians. The dotted horizontal line indicates the threshold for declaring a locus genome wide to be significant (5.26 × 10⁻¹⁹). The best candidate gene is indicated near the peak. Loci below the significance threshold and previously described are marked with an asterisk.

Resource

Genetic Variants Regulating Immune Cell Levels in Health and Disease

Valeria Orti, ^{1,12} Maristella Steri, ^{1,12} Gabriella Sole, ¹ Carlo Sidore, ^{1,22} Francesca Virdis, ¹ Marian Del, ¹ Sandra Lal, ¹ Magdalera Zoledziewska, ¹ Fabio Busonero, ¹ Antone Isla Mulsa, ^{1,22} Matteo Foire, ¹ Wieslawa I. Mentzen, ¹ Sterian ioli, ¹ Wirk, ¹ Sterian ioli, ¹ Wirkele Manongui, ¹ Maria G. Piras, ¹ Monia Lobina, ^{1,2} Andrea Massichia Maristela Pitzals, ¹ Maris F. Urru, ¹ Marco Marcelli, ¹ Roberto Cusson, ^{1,2} Francesca Deidda, ^{1,2} Valentina Serra, ^{1,22} Manusla Oppo, ¹ Rosela Patu, ^{1,22} Federie Reineri, ¹ Ricosard Beutu, ^{1,22} Luca Preddu, ^{1,22} Inenia Zara, ² Beonora Porcu, ^{1,23} Alan Kwong, ² Christine Brennan, ¹ Brendan Tarrieri, ¹ Robert (purps, ¹ Hyun M. Kang, ² Sergio Uzzau, ^{2,32} Rossano Atzeni, ⁴ Maria Valentina, ^{1,22} Davide Frami, ¹ Lida Leoni, ² Galancia Rotta, ² Silva Razz, ^{2,32} Andrea Angue, ^{3,42} Marco Corgia, ² Serena Sama, ^{1,1,22} Wir M. Jones, ² David Schlessinge, ^{3,42} Gorgalo R. Abecasis, ^{3,42} Edoardo Fiorillo, ^{1,1,22} Serena Sama, ^{1,1,22} Ward Francesco Cocca ^{2,42}, ^{4,42}

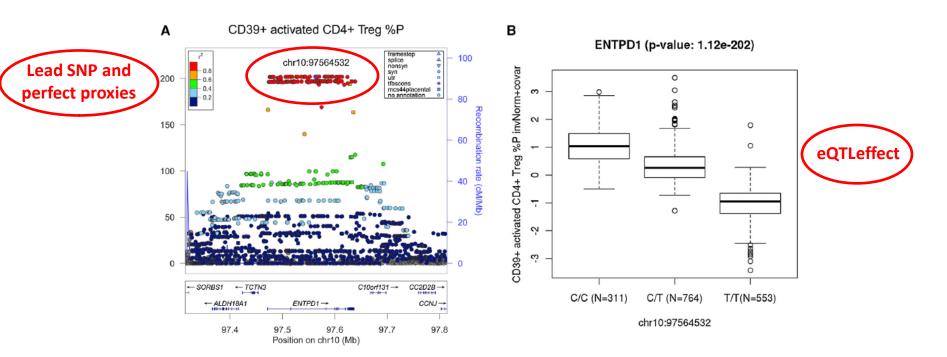


Figure 4. Regional Plot and Box Plot for the Top Signal in ENTPD1

(A and B) Representation of the association in the genomic context (A) and in the biological context (B) for the most strongly associated variant at the ENTPD1 gene.

(A) Representation of the association strength (y axis shows the -log10 p value) versus the genomic positions (on hg19/GRCh37 genomic build) around the most significant SNP, which is indicated with a purple circle. Other SNPs in the region are color coded to reflect their LD with the top SNP, as in the left inset (taken from pairwise r² values calculated on Sardinian haplotypes), whereas symbols reflecting genomic functional annotation are indicated in the right inset. Genes and the position of exons, as well as the direction of transcription, are noted in lower boxes. This plot was drawn using the standalone version of the LocusZoom package (Pruim et al., 2010).

(B) The distribution of the immunophenotypic levels within each genotype class considering the normalized trait adjusted for age and gender in relation to the 1,629 initial samples, showing the additive effect that was statistically observed.

Locus	Candidate Genes	topSNP (chr:position/rsID)	A1/A2	Freq A1	Trait	Effect (SE)	Var. Expl.	p Value (n = 1,629)	SNP for Validation (chr.position/rsID)		Validation p Value (n = 2,870)
1	FCGR3A(p,c,o), FCGR2C(p,o), FCGR2A(e,c,o), FCGR2B(e,o), HSPA6(e), HSPA7(e)	chr1:161536758/ rs58055840	T/C	0.742	CD62L- myeloidcDC AC	-0.895 (0.044)	30.26	3.73 × 10 ⁻⁹¹	chr1:161515326/ rs55971447	0.937	6.83 × 10 ⁻¹²⁵
2	HNRPLL(p)	chr2:38792045/ rs183949931	T/C	0.967	CD45RA- CD28- CD8br %P	0.778 (0.105)	4.05	1.05 × 10 ⁻¹³	chr2:38792045/ rs183949931	same SNP	1.046 × 10 ⁻²
2	GALM(p,c,e), HNRPLL(b)	chr2:38897074/ rs13011383	G/A	0.730	TD CD4+ %GP	-0.371 (0.042)	5.52	6.05 × 10 ⁻¹⁹	chr2:38886041/ rs4670262	0.87	1.26 × 10 ⁻²⁷
2	GALM(p), DHX57(e), HNRPLL(b)	chr2:38921934/ rs7583259	G/C	0.508	CD45RA- CD28- CD8br %P	-0.548 (0.039)	15.09	9.40 × 10 ⁻⁴⁶	chr2:38932777/ rs4670265	0.9	2.82 × 10 ⁻⁶²
3	CD8A(p,c,o), RMND5A(p), CD8B(b), VPS24(e)	chr2:87014377/ rs2944254	C/T	0.810	CD4+ CD8dim AC	0.383 (0.05)	4.55	2.52 × 10 ⁻¹⁴	chr2:87018547/ rs3810831	0.943	1.3 × 10 ⁻²²
4	COQ2(e), PLAC8(e), HPSE(e)	chr4:84150313/ rs4431216	T/C	0.633	CD62L- plasmacytoidcDC %P	0.337 (0.04)	5.19	4.96 × 10 ⁻¹⁷	chr4:84179071/ rs7667017	0.84	3.37×10^{-23}
5	HLA-E(p,c,e), HCG27(e), GNL1(c), ABCF1(e), C2(e), PSORS1C3(e), RPP21(e), TRIM39(e), ZKSCAN2(e)	chr6:39466505/ rs117765619	G/T	0.516	CD45RA- CD8+ AC	-0.228 (0.037)	2.62	5.24 × 10 ⁻¹⁰	chr9:30482993/ rs2534812	0.974	1.34 × 10 ⁻¹¹
5	HLA-B(p,c), VARS2(e), IER3(e), ZFP57(e)	chr6:31327382/ rs2395476	T/G	0.858	CD45RA- CD28+ CD8+ %P	0.352 (0.051)	3.21	3.69 × 10 ⁻¹²	chr6:31327382/ rs2395476	same SNP	1.827 × 10 ⁻¹⁹
5	HLA-DRA(p,e), BTNL2(p,c), HLA- DRB1(c,e), HLA-DQA1(e), HLA- DQB1(e), HLA-DRBS(e), HLA-DOB(e), LOC642073(e), VARS2(e), LST1(e), ER3(e), GTF2H4(e), HMGA1(e), RPL34(e)*, AOAH(e)*	chre 33396433/ rs113534101	G/A	0.776	CD4+ CD8dim %P	-0.299 (0.043)	3.07	5.68 × 10 ⁻¹²	cbrg:39/383138/ rs115615758	0.97	2.78 × 10 ⁻¹⁶
	HLA-DRA(p), LOC642073(e), HLA-DOB(e), RPL34(e) ⁿ , ARHGAP24(e) ⁿ , AOAH(e) ⁿ	cbr6:32428186/ rs6923504	G/C	0.618	CD45RA- CD28- CD8+ AC	-0.249 (0.037)	3.01		cbr6:32428285/ rs6903608	0.99	4.3 × 10 ⁻¹³
6	IL2RA(p,o)	chr10:6094697/ rs61839660	C/T	0.934	CD45RA- CD25hi CD4+ not Treg %P	-0.49 (0.073)	2.82	1.85 × 10 ⁻¹¹	chr10:6094697/ rs61839660	same SNP	5.65×10^{-23}
6	RBM17(p), IL2RA(p,o)	chr10:6158412/ rs8463	₽G	0.802	CD25hi CD4+ %P	-0.294 (0.046)	2.85	1.21 × 10 ⁻¹⁰	chr10:6158412/ rs8463	same SNP	2.02×10^{-15}
7	SORBS1(p), C10orf61(e), ALDH18A1(c), ENTPD1(e)	chr10:97331924/ rs117568941	T/C	0.955	CD39+ CD8+ %GP	-0.650 (0.062)	6.68	1.45 × 10 ⁻²⁵	chr10:97331958/ rs7099430	0.969	1.32 × 10 ⁻³⁵
7	ALDH18A1(p), ENTPD1(b)	chr10:97393678/ rs1890187	A/G	0.975	CD39+ activated CD4+ Treg %P	-0.671 (0.073)	5.97	5.72 × 10 ⁻²⁰	chr10:97550405/ rs11188485	0.97	2.97 × 10 ⁻³²
7	ENTPD1(p,e)	chr10:97564532/ rs11517041	T/C	0.578	CD39+ activated CD4+ Treg %P	-1.113 (0.037)	60.81	1.12 × 10 ⁻²⁰²	chr10:97515137/ rs3814159	0.993	7.05 × 10 ⁻³²⁷

chr10:97932006/ C/T 0.955 CD39+ CD25hi

CD4+ %P

rs117592294

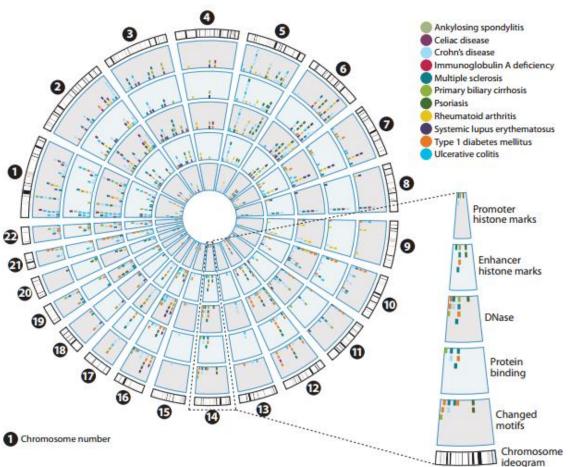
Perfect Proxy

(Continued on next page)

SNP

0.497 (0.066) 4.33 6.26 × 10⁻¹⁴ chr10:97932006/ same 1.35 × 10⁻¹⁵

rs117592294



Lead SNP

ZNF518A(p), BLNK(p,o),

ENTPD1(b)

igure 2

Mapping of Immune-Mediated Disease Genes

Isis Ricaño-Ponce and Cisca Wijmenga

Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; email: c.wijmenga@umcg.nl

What have we learned from GWAS in AID?

The lead SNP reported in GWAS has only 5% chance of being the causal SNP

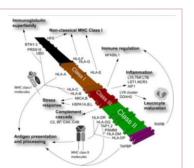
Lead SNPs are typically some distance from the causal SNPs (median~ 14kb)

Lead SNPs and causal SNPs are not necessarily in tight LD $(r^2 = 0.50 \text{ is not unusual})$

Almost all causal SNPs map to enhancers and promoters

Genetic and epigenetic fine mapping of causal autoimmune disease variants

Kyle Kai-How Farh^{1,2}°, Alexander Marson²°, Jiang Zhu^{1,4,5,6}, Markus Kleinewietfeld^{1,7}†, William J. Housley⁷, Samantha Beik¹, Noam Shoresh¹, Holly Whitton¹, Russell J. H. Ryan^{1,5}, Alexander A. Shishkin^{1,8}, Meital Hatan¹, Marlene J. Carrasco-Alfonso⁹, Dita Mayer⁹, C. John Luckey⁹, Nikolaos A. Patsopoulos^{11,0,11}, Philip L. De Jager^{1,10,11}, Vijay K. Kuchroo¹², Charles B. Epstein¹, Mark J. Daly^{1,2}, David A. Hafler^{1,2} § & Bradley E. Bernstein^{1,4,5,6}§



HLA Region: Unique Features

- Most gene dense
- Extremely polymorphic
- Paralog regions and genes
- CNV and structural variation
- Very high linkage disequilibrium over very long range resulting from conserved extended haplotypes (CEH)
- Greatest trans-eQTL density
- Very strong selective pressures
- Extreme geographical, racial and ethnic differential in allele frequencies
- So many lineages and groupings of alleles & haplotypes
- So many functional dimorphisms or supertypes with no single corresponding SNPs

Transplant Outcomes: Markers

HLA mismatching
mH mismatching

Donor or recipient genotype

Genetic Prediction of Transplant Outcomes

MHC-Resident Variation Affects Risks After Unrelated Donor Hematopoietic Cell Transplantation

Effie W. Petersdorf et al. Sci Transl Med 4, 144ra101 (2012);

Blood malignancies can be cured with hematopoietic cell transplantation from human leukocyte antigen (HLA)—matched unrelated donors; however, acute graft-versus-host disease (GVHD) affects up to 80% of patients and contributes to increased mortality. To test the hypothesis that undetected patient-donor differences for non-HLA genetic variation within the major histocompatibility complex (MHC) could confer risks after HLA-matched transplantation, we conducted a discovery-validation study of 4205 transplants for 1120 MHC region single-nudeotide polymorphisms (SNPs). Two SNPs were identified as markers for disease-free survival and acute GVHD. Among patients with two or more HLA-matched unrelated donors identified on their search, SNP genotyping of patients and their potential donors demonstrated that most patients have a choice of SNP-matched donors. In condusion, the success of HLA-matched unrelated donor hematopoietic cell transplantation depends on non-HLA MHC region genetic variation. Prospective SNP screening and matching provides an approach for lowering risks to patients.

Grade III to IV acute GVHD	rs3132486	HLA-C/ flanking 5'UTR	Donor genotype	1.72 × 10 ⁻⁴	AA AG	174/620 215/1093	1.00 0.66 (0.54–0.81)
					GG	129/527	0.87 (0.69–1.10)
	rs2859091	HLA-DQA2/	Donor	2.34×10^{-6}	π	252/897	1.00
		flanking 5'UTR	genotype		AT	195/1013	0.62 (0.51-0.75)
					AA	71/330	0.68 (0.52-0.89)

Genetic Prediction of Transplant Outcomes

2013 121: 1896-1905 doi:10.1182/blood-2012-11-465161 originally published

Mapping MHC haplotype effects in unrelated donor hematopoietic cell transplantation

Effie W. Petersdorf, Mari Malkki, Mary M. Horowitz, Stephen R. Spellman, Michael D. Haagenson and Tao Wang

Key Points

- · HLA haplotypes encode single nucleotide polymorphisms (SNPs) that are associated with risks after **HLA-mismatched unrelated** donor HCT.
- · SNPs associated with graftversus-host disease (GVHD) are independent of those associated with relapse.

Outcome	SNP	Gene/location*	Model	Overall P	Genotype or mismatch† group	Number of events	HR (95% CI)	P
Survival	rs429916	1.2 kb centromeric of HLA-DOA	Patient genotype	7.48 × 10 ⁻⁵	СС	1254/1909	1	
					AC	201/296	1.11 (0.94-1.31)	.23
					AA	18/19	3.47 (1.95-6.16)	2.27 × 10 ⁻⁵
Disease-free survival‡	rs429916	1.2 kb centromeric of HLA-DOA	Patient genotype	4.28 × 10 ⁻⁵	СС	1147/1708	1	
					AC	188/268	1.06 (0.88-1.26)	.56
					AA	18/19	3.75 (2.10-6.68)	7.86 × 10 ⁻⁶
Relapse‡	rs2244546	2.2 kb telomeric of HCP5	Donor genotype	6.92 × 10 ⁻⁴	CC	373/1611	1	
					CG	117/435	1.19 (0.95-1.50)	.14
					GG	16/30	2.79 (1.60-4.85)	2.87 × 10 ⁻⁴
	rs986522	COL11A2, intron	Donor genotype	3.20×10^{-5}	CG	209/1025	1	
					CC	136/478	1.46 (1.16-1.85)	1.45 × 10 ⁻³
					GG	161/573	1.62 (1.30-2.03)	2.14 × 10 ⁻⁵
Transplant-related mortality	rs915654	1.4 kb telomeric of LTA	Patient genotype	9.93 × 10 ⁻⁵	AT	394/964	1	
					AA	142/300	1.45 (1.16-1.80)	1.16 × 10 ⁻³
					π	332/718	1.39 (1.17-1.64)	1.43 × 10 ⁻⁴
	rs429916	1.2 kb centromeric of HLA-DOA	Patient genotype	2.82 × 10 ⁻⁵	СС	720/1696	1	
					AC	134/267	1.20 (0.97-1.49)	9.67 × 10 ⁻²
					AA	14/19	4.52 (2.31-8.86)	1.11 × 10 ⁻⁵
Grades II-IV acute GVHD§	rs2242656	BAG6, intron	Mismatch	3.13 × 10 ⁻⁴	Matched	865/1535	1	
					HVG	122/214	1.00 (0.82-1.22)	1
					GVH	136/203	1.46 (1.21-1.77)	6.92 × 10 ⁻⁵
Grades III-IV acute GVHD	rs209130	3 kb telomeric of TRIM27	Mismatch	6.42 × 10 ⁻⁵	Matched	251/920	1	
					HVG	154/488	1.22 (0.99-1.50)	6.11 × 10 ⁻²
					GVH	124/420	1.19 (0.96-1.49)	.12
					Bi	45/103	2.17 (1.56-3.01)	3.70 × 10 ⁻⁶
	rs2075800	HSPA1L, Glu602Lys	Patient genotype	8.37×10^{-4}	GG	289/848	1	
					AG	214/819	0.72 (0.60-0.86)	4.01 × 10 ⁻⁴
					AA	71/264	0.73 (0.56-0.95)	2.07 × 10 ⁻²
	rs394657	NOTCH4, intron	Donor	4.15 × 10 ⁻⁴	AA	150/626	1	
			genotype		AG	301/923	1.48 (1.21-1.81)	1.16 × 10 ⁻⁴

Genetic Prediction of Transplant Outcomes

2013 121: 1896-1905 doi:10.1182/blood-2012-11-465161 originally published

Mapping MHC haplotype effects in unrelated donor hematopoietic cell transplantation

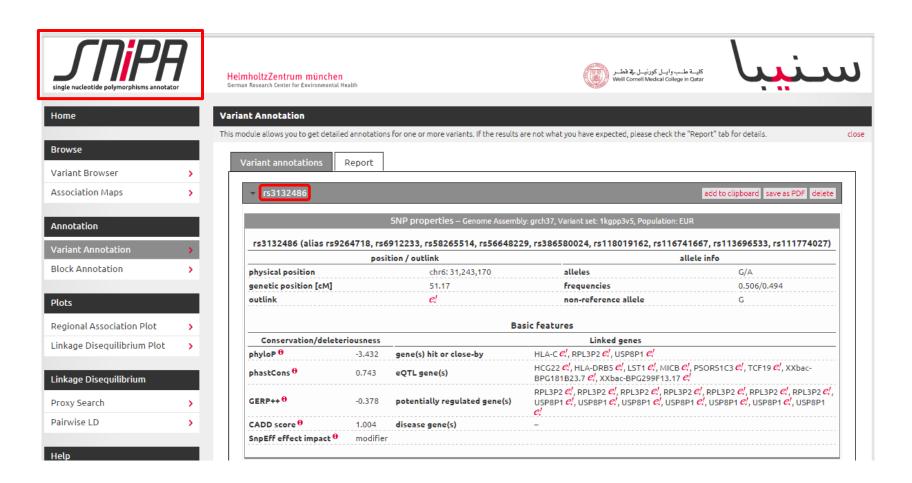
Effie W. Petersdorf, Mari Malkki, Mary M. Horowitz, Stephen R. Spellman, Michael D. Haagenson and Tao Wang

Key Points

- HLA haplotypes encode single nucleotide polymorphisms (SNPs) that are associated with risks after HLA-mismatched unrelated donor HCT.
- SNPs associated with graftversus-host disease (GVHD) are independent of those associated with relapse.

SNPs provide clues to the candidate genes and mechanisms involved in transplant-associated complications. The identification of 2 SNPs within the HLA-DOA and -DOB genes provides strong evidence for a role for antigen processing and presentation in immune responses in HLA-mismatched transplantation.³¹ The rs2075800G/A SNP defines a glutamic acid/lysine substitution at residue 602 of the heat shock protein-70 A1L molecule. We hypothesize a possible role for the differential binding of peptides by heat shock protein-A1L molecules and/or stimulation of cytokines in GVHD.³² The second SNP marker for grades III-IV acute GVHD, rs394657, resides within the NOTCH4 gene intron and is in positive linkage disequilibrium with nonsynonymous substitutions. Sequence polymorphism of NOTCH4 receptors could influence the inflammatory nature of acute GVHD through altered ligand-receptor binding and production of TNF-α, IFN-γ, IL-4, and IL-17.³³ Alternatively, SNP rs394657 might influence GVHD through its role as a putative expression quantitative locus for HLA-DQA1, $^{\bar{3}4}$ the gene that encodes the DQ α chain of the HLA-DQ heterodimer. Differential DQα expression may have consequences for alloantigen recognition in GVHD.

NHLBI key	Snp Id	Pvalue	PMID	Locatio	n Phenotype	Phenotype Category	chr	pos	InGene
204538421544740	rs2075800	2.4E-100	20453842	FullScan	Rheumatoid arthritis	Inflammation,Arthriti arthritis	6	31810169	(HSPA1L)
175543002216079	rs3132486	3.3E-63	17554300	Webdata	Type 1 diabetes, combined control dataset	Cardiovascular disease (CVD),Myocardial infarction infarction (MI),Neuro,Behavior disorder,Blood pressure,CVD risk factor (CVD RF),Blood-related,Type 1 diabetes (T1D),Type 2 diabetes (T2D),Developmental arthritis,Crohn's disease		31275393	
175543001544729	rs2075800	9.5E-42	17554300	Webdata	Rheumatoid arthritis, combined control dataset	Cardiovascular disease (CVD),Myocardial infarction (MI),Neuro,Behavior disorder,Blood pressure,CVD risk factor (CVD RF),Blood-related,Type 1 diabetes (T1D),Type 2 diabetes (T2D),Developmental arthritis,Crohn's disease		31810169	(HSPA1L)
204538422216107	rs3132486	1.7E-37	20453842	FullScan	Rheumatoid arthritis	Inflammation,Arthriti arthritis	6	31275393	
195030881544734	rs2075800	8.3E-36	19503088	Table S2	Rheumatoid arthritis	Inflammation,Arthriti arthritis	6	31810169	(HSPA1L)
211567611544753	rs2075800	1.3E-31	21156761	Table S3	Rheumatoid arthritis (ACPA- positive)	Inflammation,Arthriti arthritis	6	31810169	(HSPA1L)



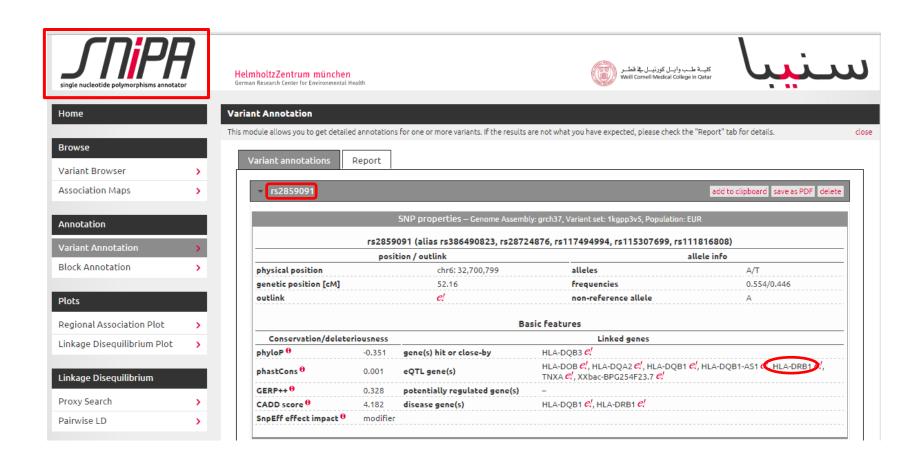
					positive				
178048361544730	rs2075800	2.0E-29	17804836	RawUna	Rheumatoid arthritis	Inflammation,Arthriti arthritis	6	31810169	(HSPA1L)
21323541273999	rs394657	8.2E-17	21323541	Table S6	Idiopathic membranous nephropathy	Renal	6	32219246	(NOTCH4)
176325452216080	rs3132486	1.1E-16	<u>17632545</u>	TableS1	Type 1 diabetes	Type 1 diabetes (T1D),Developmental risk factor (CVD RF)	6	31275393	
204538422097312	rs2859100	1.7E-16	20453842	FullScan	Rheumatoid arthritis	Inflammation,Arthriti arthritis	6	32731702	
234556366395722	rs394657	9.5E-11	23455636	FullData	Advanced age- related macular degeneration	Eye-related,Aging,Age- related macular degeneration (ARMD)	6	32219246	(NOTCH4)
20453842273995	rs394657	1.2E-09	20453842	FullScan	Rheumatoid arthritis	Inflammation,Arthriti arthritis	6	32219246	(NOTCH4)
176605302216081	rs3132486	2.9E-09	17660530	RawUna	Multiple sclerosis	Neuro,Inflammation, sclerosis (MS)	6	31275393	
19503088273993	rs394657	8.1E-08	19503088	Table S2	Rheumatoid arthritis	Inflammation, Arthriti arthritis	6	32219246	(NOTCH4)
203831471544739	rs2075800	1.6E-07	20383147	Table S2	Systemic sclerosis	Skin-related,Muscle- related	6	31810169	(HSPA1L)

The GVHD risk markers are also associated with RA, T1D, MS, PSS and idiopathic membranous nephropathy (rs2075800, rs394657, rs3132486, rs2859091/rs2859100)

A large number of non-coding genes are eQTL targets, but not the nearest gene *HLA-C*!

Your query: rs3132486

Trans-eQTLs


P-value SNP SNP Chr. SNP Chr. position Probe Probe Chr. Probe Chr. position SNP Alleles Minor Allele Z-score Gene name FDR No records found.

Cis-eQTLs

P-value	SNP	SNP Chr.	SNP Chr. Position	Probe	Probe Chr.	Probe Chr. position	SNP Alleles	Minor Allele	Z- score	Gene name	FDR	١
5.4069191854449905E- 37	rs313248	866	31351149	580452	6	31558934	G/A	Α	12.71	-	0.00	ı
8.8792092502963E-26	rs313248	366	31351149	1440603	36	31556059	G/A	Α	-10.50	_	0.00	,
2.617756407729722E-5	rs313248	366	31351149	3890097	76	31239621	G/A	Α	-4.20	TCF19	0.01	
1.8212601781875332E-4	rs313248	366	31351149	3170064	46	31586789	G/A	Α	3.74	MICB	0.07	
0.0026436099021629866	rs313248	366	31351149	780600	6	31541393	G/A	Α	-3 01	HCP5	0.43	

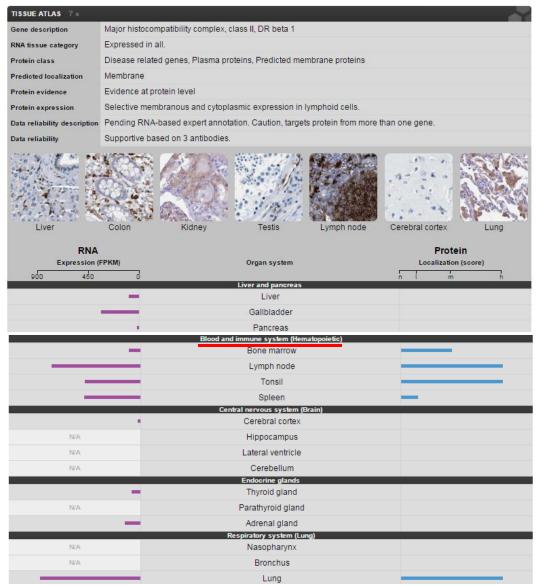
Interpretation of GWAS Findings: eQTLs

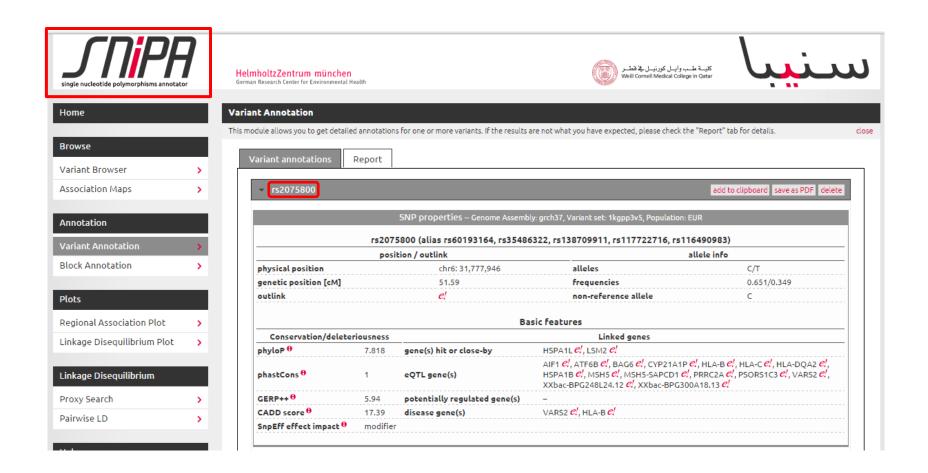
THE HUMAN PROTEIN ATLAS

ABOUT HELP BLOG

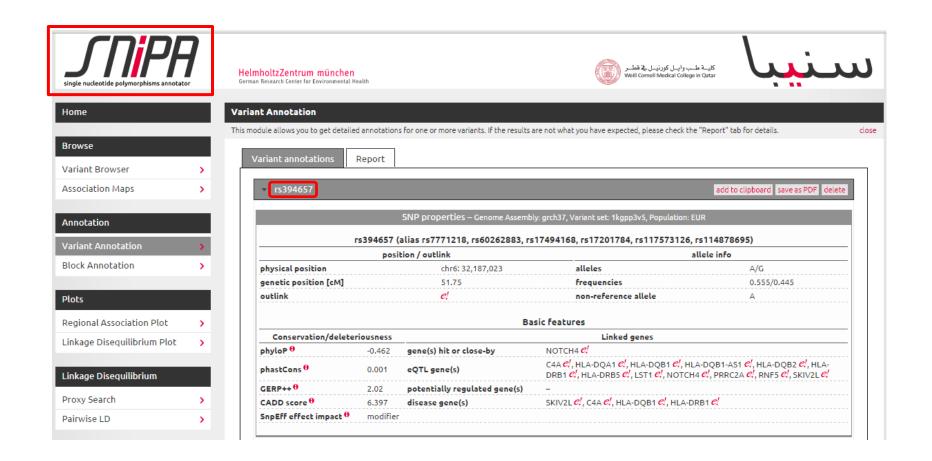
A Tissue-Based Map of the Human Proteome

Here, we summarize our current knowledge regarding the human proteome mainly achieved through antibody-based methods combined with transcriptomics analysis across all major tissues and organs of the human body. A large number of lists can be accessed with direct links to gene-specific images of the corresponding proteins in the different tissues and organs. Read more




Interpretation of GWAS Findings: eQTLs

HLA-DRB1



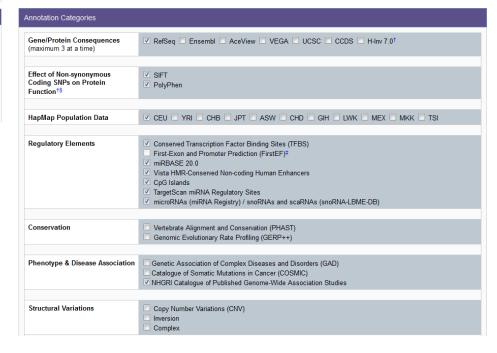
HelmholtzZentrum münchen
German Besearch Center for Environmental Health

The GVHD risk markers are mainly acting as eQTLs

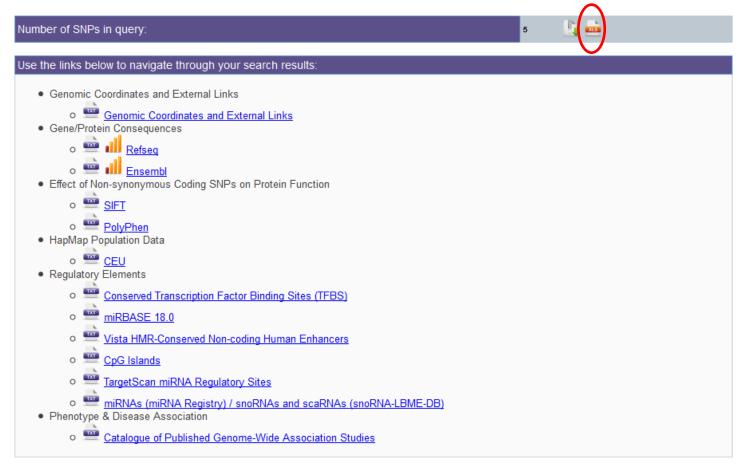
Their target genes are more commonly the genes other than the nearest gene

The target genes include pseudogenes and ncRNA genes

(rs2075800, rs394657, rs3132486, rs2859091)



User details	
Email address (optional):	
Dataset name (optional):	
Query Options	
Assembly	GRCh37/hg19 ▼
Query Type	Batch Query ▼
Batch Query	Paste in your query (upto 100K SNPs/InDels):
[Input format] [Load Example]	dbSNP rs2075800
	dbSNP rs394657
	dbSNP rs3132486
	dbSNP rs2859091


dbSNP rs2859100

Descriptive data, including HapMap frequencies, provided

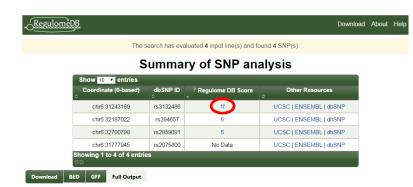
Polyphen score for the *HSPA1L* nsSNP is 0.001 (benign)

None of the SNPs are in conserved transcription factor binding sites nor in miRNA sequences/miRNA binding sites

None of the SNPs are in CpG islands

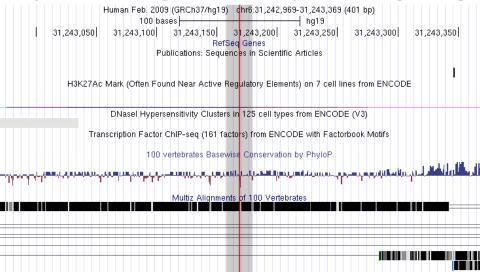
None of the SNPs are in enhancers

Download



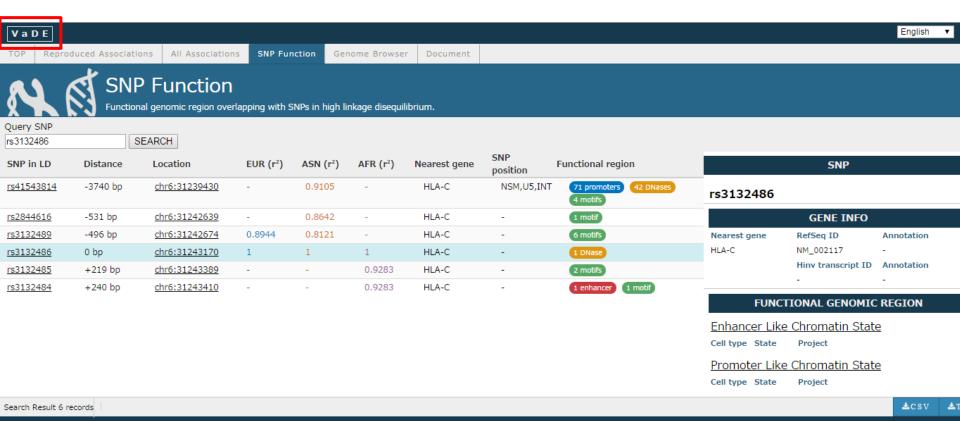
Summary of SNP analysis

Coordinate (0-based)	dbSNP ID	? Regulome DB Score	Other Resources
chr6:31243169	rs3132486	1f	UCSC ENSEMBL dbSNP
chr6:32187022	rs394657	6	UCSC ENSEMBL dbSNP
chr6:32700798	rs2859091	6	UCSC ENSEMBL dbSNP
chr6:31777945	rs2075800	No Data	UCSC ENSEMBL dbSNP
owing 1 to 4 of 4 entrie	s		



Download About Help

Data supporting chr6:31243169 (rs3132486)


Score: 1f

Likely to affect binding and linked to expression of a gene target

© 2014-2015 Biomedical Informatics Laboratory, Tokai University School of Medicine. All Rights Reserved.

HaploReg v3

HaploReg is a tool for exploring annotations of the noncoding genome at variants on haplotype blocks, such as candidate regulatory SNPs at diseaseassociated loci. Using LD information from the 1000 Genomes Project, linked SNPs and small indels can be visualized along with their predicted chromatin state, their sequence conservation across mammals, and their effect on regulatory motifs. HaploReg is designed for researchers developing mechanistic hypotheses of the impact of non-coding variants on clinical phenotypes and normal variation.

Update 2014.02.14: Version 3 now includes an improved motif library and final reference epigenomes the Roadmap, including predicted causal enhancer motif instances. The GWAS library has also been updated and revamped by aggregating across traits and pruning. Version 2 is available here

Build Query	Set Options	Documentation	
			set of variants. If an r^2 threshold is specified (see the Set Options tab), results for each variant will be shown in If r^2 is set to NA, only queried variants will be shown, together in one table.
	ma-delimited lis a single region chrN:start-er	as rs3132486	
or, upk	oad a text file (d efSNP ID per lin	one (e): Choose File	No file chosen
C	r, select a GW	AS:	•
Submit			

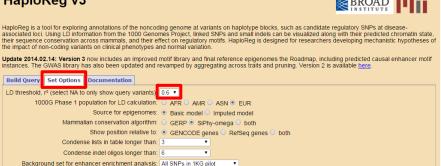
HaploReg v3

Build Query Set Options Documentation LD threshold, r² (select NA to only show query variants) 0.6 ▼

the impact of non-coding variants on clinical phenotypes and normal variation.

Condense lists in table longer than: 3 Condense indel oligos longer than: 6 Background set for enhancer enrichment analysis: All SNPs in 1KG pilot

1000G Phase 1 population for LD calculation: O AFR O AMR O ASN O EUR


Source for epigenomes:

Basic model

Imputed model Mammalian conservation algorithm: O GERP O SiPhy-omega O both

Show position relative to:

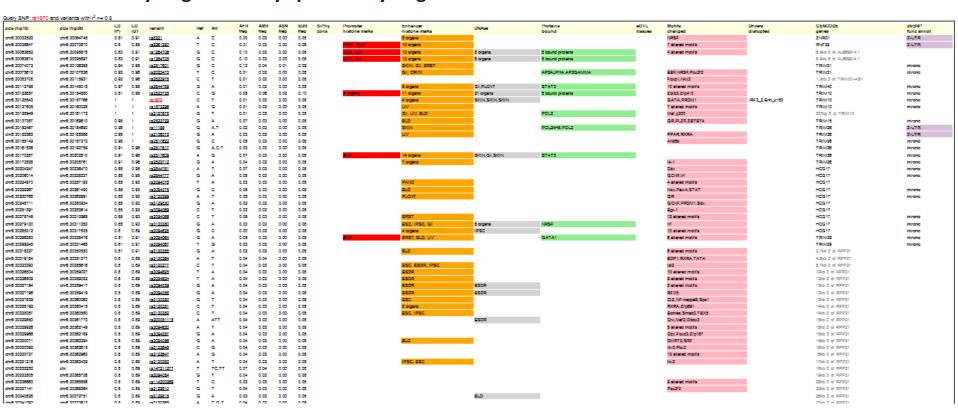
GENCODE genes
RefSeq genes
both

Query SNP: rs3132486 and variants with $r^2 >= 0.6$

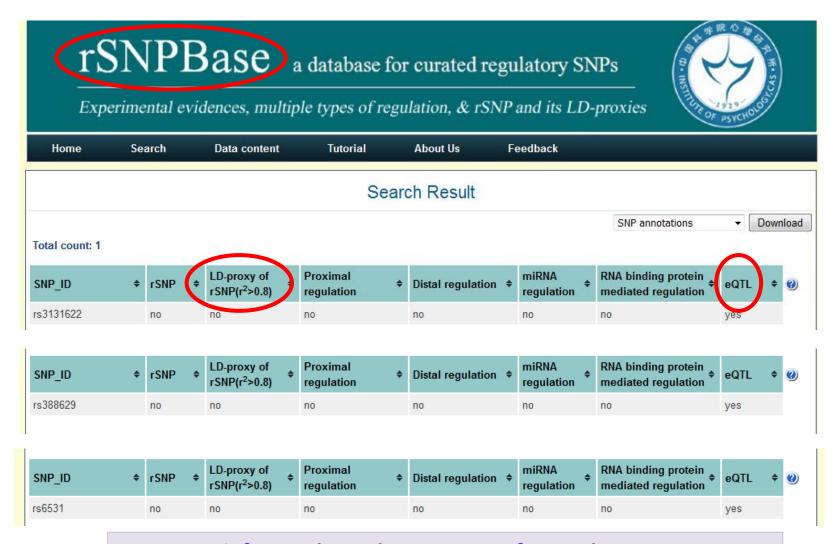
pos (hg19)	pos (hg38)	LD (r²)	LD (D')	variant	Ref	f Alt				Promoter histone marks	Enhancer histone marks	DNAse	Proteins bound	Motifs changed	Drivers disrupted	GENCODE genes	dbSNP func annot
chr6:31242674	chr6:31274897	0.89	0.99	rs3132489	С	Т	0.33 0.49	0.60	0.47					4 altered motifs		2.8kb 5' of HLA-C	
chr6:31242817	chr6:31275040	0.77	0.99	rs6930376	Α	Τ	0.33 0.41	0.40	0.43					Nrf1,STAT,TCF4		2.9kb 5' of HLA-C	
chr6:31242859	chr6:31275082	0.73	0.98	rs3130693	Т	С	0.33 0.40	0.38	0.42					AP-1,Mef2,PPAR		3kb 5' of HLA-C	
chr6:31243170	chr6:31275393	1	1	rs3132486	G	A,C,T	0.45 0.52	0.65	0.49							3.3kb 5' of HLA-C	
chr6:31243389	chr6:31275612	8.0	0.99	rs3132485	С	Α	0.43 0.42	0.40	0.44					Gfi1b,p300		3.5kb 5' of HLA-C	
chr6:31243410	chr6:31275633	0.79	0.99	rs3132484	G	Т	0.43 0.42	0.40	0.44		BLD			Osr		3.5kb 5' of HLA-C	

The search has evaluated 6 input line(s) and found 6 SNP(s).

Summary of SNP analysis


Coordinate (0-based)	dbSNP ID	? Regulome DB Score	Other Resources
chr6:31243169	rs3132486	1f	UCSC ENSEMBL dbSNP
chr6:31242673	rs3132489	5	UCSC ENSEMBL dbSNP
chr6:31242858	rs3130693	5	UCSC ENSEMBL dbSNP
chr6:31242816	rs6930376	6	UCSC ENSEMBL dbSNP
chr6:31243388	rs3132485	No Data	UCSC ENSEMBL dbSNP
chr6:31243409	rs3132484	No Data	UCSC ENSEMBL dbSNP

Download BED GFF Full Output


... can be very large and may span a very large distance.

Average number of perfect proxies for AID-associated lead SNPs = 7.6

rSNPBase informs about the presence of a regulatory SNP among the statistically similar SNP set.

GWAS Results and HLA Types

IHWG-ID	CELL LINE _	ST _	CEH Population				A rs722788_C		
	_		_	_	_		Ý	_	
9026	YAR	53	38.1	Ashkenazi Jewish	2	2	0	0	
9027	PF97387	53	44.2+44.X	French	2	2	0	0	
9028	PE117	53	60.1+XX.X	Amerindian	2	2	0	2	
9031	BOLETH BO	53	62.1	Scandinavian	2	2	0	0	
9047	PLH	53	47.1	Scandinavian	2	2	1	2	
9048	<u>LBUF</u>	53	13.1	English	2	2	0	0	
9050	MOU-MANN	53	44.3	Scandinavian	2	2	0	0	
9051	PITOUT	53	44.2	South African White	2	2	0	0	
9052	<u>DBB</u>	53	57.1	USA White	2	2	0	0	
9090	AWELLS	53	44.1	Australian Caucasoid	2	2	0	0	
9092	BM92	53	51.1	Italian	2	2	0	0	
9093	BER	53	13.1	German	2	2	0	0	
9094	CF996	53	64.1	French	2	2	1	1	
9098	MT14B	53	60.1	Australian Caucasoid	2	2	1	1	
9106	MANIKA	53	50.1 (H)	Tamil Asian Indian	2	2		2	
9107	KT3, LKT3	53	54.1	Japanese	2	2	0	0	
9139	WHONP439	53	46.1	Asian	2	2	0	0	
9140	WHO-NP192	53	54.1+46.1	Asian	2	2	0	0	
9145	FUR, RE	52,53	57.1+60.3	White	1	1	1	1	
9146	COL, E	53	62.2	Unknown	2	2	0	0	
9150	BOW, MF	53,53	44.1+50.1	Unknown	2	2	1	1	
9151	EAV,AC	53,10	37.1+50.1	Unknown	1	1	0	0	

rs2395185 is a marker for the HLA-DR53 lineage, which has unique immunological characteristics.

CORRESPONDENCE -

Re: Genome-Wide Association Study of Classical Hodgkin Lymphoma and Epstein-Barr Virus Status-Defined Subgroups

AMY E. KENNEDY SANDEEP K. SINGH M. TEVFIK DORAK

JNCI

Vol. 104, Issue 11 | June 6, 2012

GWAS Results and HLA Types

В	Υ	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO
IHWG#	rs6923504_G	HLA-A 1	HLA-A 2	HLA-B 1	HLA-B 2	HLA-C 1	HLA-C 2	HLA-DRB1 1	HLA-DRB1 2	HLA-DRB3 1	HLA-DRB3 2	HLA-DRB4 1	HLA-DRB5 1	HLA-DQA1 1	HLA-DQA1 2	HLA-DQB1 1	HLA-DQB1 2
-	,T	▼.	-	-	-	-	-	▼	-	₩	-	-	-	-	-	-	
9008	2	A*2501	A*2501	B*1801	B*1801	Cw*12030101	Cw*12030101	DRB1*1501	DRB1*1501				DRB5*0101	DQA1*010201	DQA1*010202	DQB1*0602	DQB1*060301
9009	2	A*010101	A*010101	B*370101	B*370101	Cw*06020101	Cw*06020101	DRB1*160101	DRB1*160101				DRB5*0202	DQA1*010202	DQA1*010201	DQB1*050201	DQB1*050201
9010	2	A*68020101	A*68020101	B*530101	B*530101	C*040101	C*040101	DRB1*1503	DRB1*1503					DQA1*010201	DQA1*010201	DQB1*0602	DQB1*0602
9012	2	A*0201	A*0201	B*5701	B*5701	Cw*0701	Cw*0701	DRB1*1601	DRB1*1601					DQA1*010202	DQA1*010202	DQB1*0502	DQB1*0502
9014	2	A*2601	A*2601	B*0801	B*0801	Cw*070101	Cw*070101	DRB1*150101	DRB1*150101				DRB5*01010	DQA1*010201	DQA1*010201	DQB1*0602	DQB1*0602
9015	2	A*02:01:01	A*02:01:01	B*27:05:02	B*27:05:02	C*02:02:02	C*02:02:02	DRB1*16	DRB1*16								
9016	2	A*0204	A*0204	B*510101	B*510101	Cw*1502	Cw*1502	DRB1*160201	DRB1*160201				DRB5*0202			DQB1*0301	DQB1*0301
9017	2	A*0301	A*0301	B*070201	B*070201	Cw*070201	Cw*070201	DRB1*150101	DRB1*150101				DRB5*0101	DQA1*01:02:01	DQA1*01:02:01	DQB1*0602	DQB1*0602
9019	2	A*3002	A*3002	B*1801	B*1801	Cw*0501	Cw*0501	DRB1*0301	DRB1*0301	DRB3*0202				DQA1*050101	DQA1*050101	DQB1*0201	DQB1*0201
9020	2	A*2601	A*2601	B*1801	B*1801	Cw*0501	Cw*0501	DRB1*0301	DRB1*0301	DRB3*020201				DQA1*050101	DQA1*050101	DQB1*0201	DQB1*0201
9036	2	A*0201	A*0201	B*4402	B*4402	Cw*0501	Cw*0501	DRB1*1101	DRB1*1101	DRB3*0202				DQA1*010202	DQA1*010202	DQB1*0502	DQB1*0502
9039	2	A*0201	A*0201	B*1801	B*1801	Cw*0501	Cw*0501	DRB1*1102	DRB1*1102	DRB3*0202				DQA1*0505	DQA1*0505	DQB1*0301	DQB1*0301
9041	2	A*0101	A*0101	B*3502	B*3502	Cw*0401	Cw*0401	DRB1*1104	DRB1*1104	DRB3*0202				DQA1*0501	DQA1*0501	DQB1*0301	DQB1*0301
9042	2	A*24020101	A*24020101	B*350801	B*350801	Cw*0401	Cw*0401	DRB1*1103	DRB1*1103	DRB3*0202				DQA1*0505	DQA1*0505	DQB1*0301	DQB1*0301
9043	2	A*0101	A*0101	B*4101	B*4101	Cw*1701	Cw*1701	DRB1*1101	DRB1*1101	DRB3*0202				DQA1*0505	DQA1*0505	DQB1*0301	DQB1*0301
9060	2	A*0101	A*0101	B*1501	B*1501	Cw*0303	Cw*0303	DRB1*1301	DRB1*1301	DRB3*0202				DQA1*0103	DQA1*0103	DQB1*060301	DQB1*060301
9066	2	A*0207	A*0207	B*460101	B*460101	C*01:02	C*01:02	DRB1*08:03:02	DRB1*08:03:02					DQA1*01:03	DQA1*01:03	DQB1*06:01	DQB1*06:01
9070	2	A*02:01	A*02:01	B*51:01	B*51:01	C*14:02:01	C*14:02:01	DRB1*08:03:02	DRB1*08:03:02					DQA1*04:01	DQA1*06:01:01	DQB1*03:01:01	DQB1*03:01:0
9081	2	A*0301	A*0301	B*070201	B*070201	Cw*070201	Cw*070201	DRB1*1501	DRB1*1501				DRB5*0101	DQA1*01:02:01	DQA1*01:02:01	DQB1*0602	DQB1*0602
9084	2	A*0201	A*0201	B*4002	B*4002	Cw*020202	Cw*020202	DRB1*1601	DRB1*1601					DQA1*010202	DQA1*010202	DQB1*0502	DQB1*0502
9104	2	A*3101	A*3101	B*38:01	B*38:01	C*12:03	C*12:03	DRB1*11	DRB1*11								
9105	2	A*0101	A*0101	B*3502	B*3502	Cw*0401	Cw*0401	DRB1*110401	DRB1*110401	DRB3*0202				DQA1*0103	DQA1*0103	DQB1*060301	DQB1*060301
9157	2	A*33	A*33	B*5801	B*58	Cw*0302	Cw*0302	DRB1*0301	DRB1*0301	DRB3*02				DQA1*0501	DQA1*0501	DQB1*0201	DQB1*0201
9291	2	A*01:01:01:0:	A*01:01:01:0	B*40:01:01	B*40:01:01	C*06:02:01:01	C*06:02:01:01	DRB1*13:01:01	DRB1*13:01:01					DQA1*01:03	DQA1*01:03	DQB1*06:03:01	DQB1*06:03:0
												1					

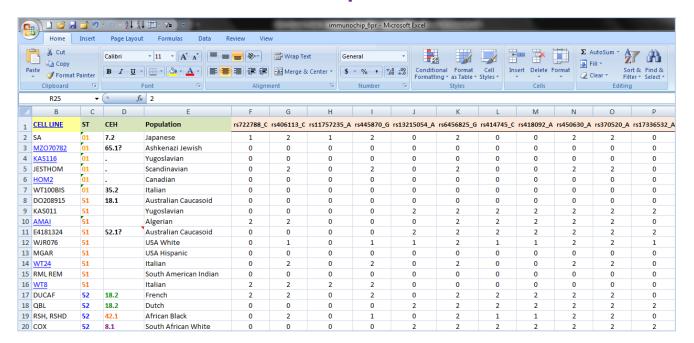
rs6923504

			_	
IHWG#	CELL LINE	ST	CEH	Population
-	-		₩.	▼ ▼
9008	DO208915	51	18.1	Australian Caucasoid
9009	KAS011	51		Yugoslavian
9010	AMAI	51		Algerian
9012	WJR076	51		USA White
9014	MGAR	51		USA Hispanic
9015	WT24	51		Italian
9016	RML REM	51		South American Indian
9017	<u>WT8</u>	51		Italian
9019	DUCAF	52	18.2	French
9020	QBL	52	18.2	Dutch
9036	SPO010	52		Italian
9039	JVM	52	18.3	Dutch
9041	J0528239	52	35.5	Italian
9042	TISI	52	35.4	French
9043	BM21	52		Italian
9060	CB6B-CGB1B	52	62.3	Australian Caucasoid
9066	TAB089,TAB	08	46.2	Japanese
9070	<u>LUY</u>	08		Dutch
9081	<u>EA</u>	51	7.1	Scandinavian
9084	CALOGERO	51		Italian
9104	DHIF	52		English
9105	FPAF FPF F	52	35.5?	Ashkenazi Jewish
9157	HAU, ML	52	58.1	Asian
9291	APD	52	١.	Dutch

HLA Region SNPs and HLA Types

ASHI 2015

A Catalog of HLA Region SNPs with Functional Annotations, Disease Associations and Correlations with HLA Types


Amy E. Kennedy ¹, Sushmita Mustafi ², Sandeep K. Singh ², Ioanna Konidari ³,

Jacob L. McCauley ³, Alejandro M. Barbieri ², Mehmet T. Dorak ⁴

¹ National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; ² Florida International University, Miami, FL, USA; ³ John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; ⁴ Liverpool Hope University, Liverpool, UK

This resource is available on request and will be online in 2016

HLA Region SNPs and HLA Types

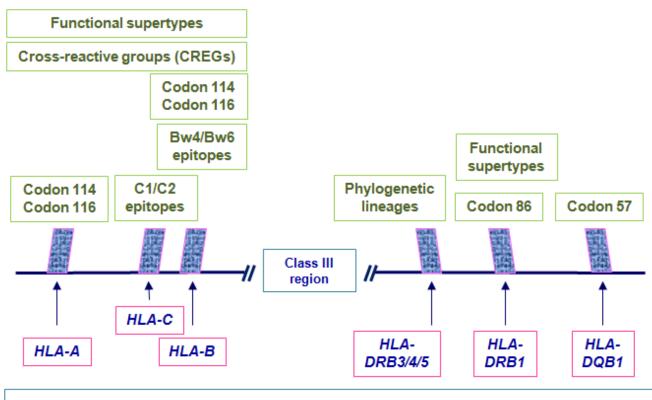


Figure 1. Functional multi-allelic HLA polymorphisms

We do not yet know the SNP equivalents of these functional groupings

a Study sample

Reference haplotypes

b Study sample

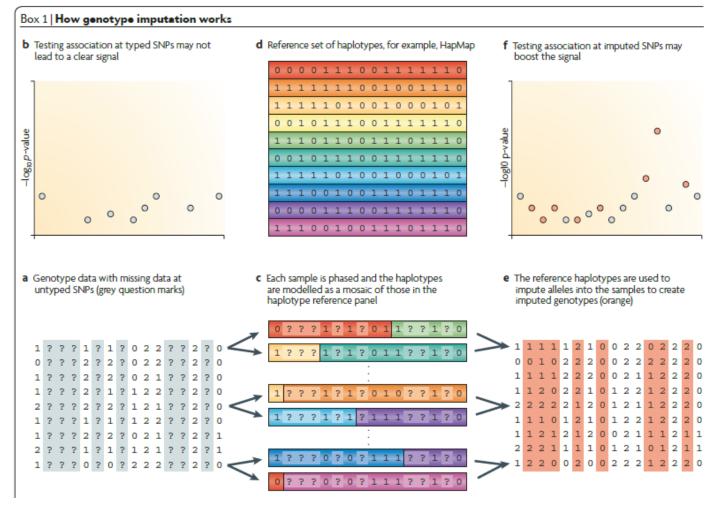
	.Α.				Α.		. A	١.	
	.G.				c.		.Α	١.	

Reference haplotypes

C Study sample

cgagAtctcccgAcctcAtgg cgaaGctcttttCtttcAtgg

Reference haplotypes


Genotype Imputation

Yun Li,¹ Cristen Willer,¹ Serena Sanna,² and Gonçalo Abecasis¹

Annu. Rev. Genomics Hum. Genet. 2009. 10:387–406

GENOME-WIDE ASSOCIATION STUDIES

Genotype imputation for genome-wide association studies

Jonathan Marchini* and Bryan Howie[‡]

NATURE REVIEWS GENETICS
VOLUME 11 JULY 2010 499

BIOINFORMATICS

ORIGINAL PAPER

Vol. 27 no. 7 2011, pages 968–972 doi:10.1093/bioinformatics/btr061

Genetics and population analysis

Advance Access publication February 7, 2011

HLA*IMP—an integrated framework for imputing classical HLA alleles from SNP genotypes

Alexander T. Dilthey¹, Loukas Moutsianas¹, Stephen Leslie¹ and Gil McVean^{1,2,*}

¹Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG and ²Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK

Associate Editor: Jeffrey Barrett

HLA*IMP

Welcome!

Important information: Affymetrix has exclusively licensed the HLA*IMP algorithm from Peptide Groove and provides HLA*IMP-based HLA type imputation for Affymetrix arrays and other platforms. For more information, please visit http://www.affymetrix.com or contact Affymetrix at Bioinformatics_services@affymetrix.com.

Functional annotations and pathway analysis

Impute missing SNPs

Impute HLA types

Infer HLA functional groupings

Repeat association analysis for all SNPs, HLA types, supertypes, epitopes, dimorphisms and lineages

CONCLUSIONS

- > Besides mismatches, there are also associations of donor or recipient genotypes with transplant outcomes
- > Reported associations should be combined with their statistically similar SNP sets (proxies) for functional annotations
- > The nearest genes are not always the target genes for SNP effects
- > The most common intermediate phenotype is gene expression changes (eQTL effects) between SNPs and their effect on phenotypes
- > GVHD-associated SNPs are also associated with autoimmune disorders as previously suspected
- > There is much more work to do with the HLA region results

ACKNOWLEDGEMENT

Many thanks to the organizing committee of *Annual EFI Region 8 EPT Meeting* for the invitation

www.dorak.info

